Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: Algae » An Overview
 
 
Please share with your friends:  
 
 

Occurrence and Distribution of Algae

 
     
 
Content
Algae
Definition
Classification
Occurrence and Distribution
Structure of Thallus
  Unicells and Unicell Colonial Algae
  Filamentous Algae
  Siphonous Algae
  Parenchymatous and Pseudoparenchymatous Algae
Nutrition

Algae can be aquatic or subaerial, when they are exposed to the atmosphere rather than being submerged in water. Aquatic algae are found almost anywhere from freshwater spring to salt lakes, with tolerance for a broad range of pH, temperature, turbidity, and O2 and CO2 concentration.

They can be planktonic, like most unicellular species, living suspended throughout the lighted regions of all water bodies including under ice in polar areas. They can be also benthic, attached to the bottom or living within sediments, limited to shallow areas because of the rapid attenuation of light with depth. Benthic algae can grow attached on stones (epilithic), on mud or sand (epipelic), on other algae or plants (epiphytic), or on animals (epizoic). In the case of marine algae, various terms can be used to describe their growth habits, such as supralittoral, when they grow above the high-tide level, within the reach of waves and spray; intertidal, when they grow on shores exposed to tidal cycles: or sublittoral, when they grow in the benthic environment from the extreme low-water level to around 200 m deep, in the case of very clear water.

Oceans covering about 71% of earth’s surface contain more than 5000 species of planktonic microscopic algae, the phytoplankton, which forms the base of the marine food chain and produces roughly 50% of the oxygen we inhale. However, phytoplankton is not only a cause of life but also a cause of death sometimes. When the population becomes too large in response to pollution with nutrients such as nitrogen and phosphate, these blooms can reduce the water transparency, causing the death of other photosynthetic organisms. They are often responsible for massive fish and bird kills, producing poisons and toxins. The temperate pelagic marine environment is also the realm of giant algae, the kelp. These algae have thalli up to 60 m long, and the community can be so crowded that it forms a real submerged forest; they are not limited to temperate waters, as they also form luxuriant thickets beneath polar ice sheets and can survive at very low depth. The depth record for algae is held by dark purple red algae collected at a depth of 268 m, where the faint light is blue-green and its intensity is only 0.0005% of surface light. At this depth the red part of the sunlight spectrum is filtered out from the water and sufficient energy is not available for photosynthesis. These algae can survive in the dark blue sea as they possess accessory pigments that absorb light in spectral regions different from those of the green chlorophylls a and b and channel this absorbed light energy to chlorophyll a, which is the only molecule that converts sunlight energy into chemical energy. For this reason the green of their chlorophylls is masked and they look dark purple. In contrast, algae that live in high irradiance habitat typically have pigments that protect them against the photodamages caused by singlet oxygen. It is the composition and amount of accessory and protective pigments that give algae their wide variety of colors andx for several algal groups, their common names such as brown algae, red algae, and golden and green algae. Internal freshwater environment displays a wide diversity of microalgae forms, although not exhibiting the phenomenal size range of their marine relatives. Freshwater phytoplankton and the benthic algae form the base of the aquatic food chain.

A considerable number of subaerial algae have adapted to life on land. They can occur in surprising places such as tree trunks, animal fur, snow banks, hot springs, or even embedded within desert rocks. The activities of land algae are thought to convert rock into soil to minimize soil erosion and to increase water retention and nutrient availability for plants growing nearby.

Algae also form mutually beneficial partnership with other organisms. They live with fungi to form lichens or inside the cells of reef-building corals, in both cases providing oxygen and complex nutrients to their partner and in return receiving protection and simple nutrients. This arrangement enables both partners to survive in conditions that they could not endure alone.

Table 1.2 summarizes the different types of habitat colonized by the algal divisions.


 
 
     
 
 
     




     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer