Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: General Biotechnology / Biotechnology & Environment
 
 
Please share with your friends:  
 
 

Environmental Biotechnology

 
     
 

Bioremediation
Bioremediation is the use of living microorganisms to degrade environmental pollutants or prevent pollution. It is a technology for removing pollutants from the environment, restoring contaminated sites and preventing future pollution. However, it has global, regional, and local application. The basis of bioremediation is the enormous natural capacity of microorganisms to degrade organic compounds. This capacity could be improved by applying the GMMs.

In Japan, academic, industrial and governmental research is tightly coordinated for global application of environmental biotechnology. Researchers are exploiting large scale application of bioremediation that can affect desert formation, global climate change and the life cycle of materials. Attempts are being made to develop microorganisms that can help reverse desert formation. This work is based on developing biopolymers that retain water and reverse desert formation. Alcaligens luteus is being used to produce 'superbioabsorbenf, a polysaccharide which is composed of glucose and glucuronic acid. These can absorb and hold more than thousand times of its own weight of water.

Using the informations from fundamental research bioremediation technology has been used to remove environmentally hazardous chemicals, accumulated in their cells or detoxify them into non-toxic forms. Several members of algae, fungi and bacteria are known to solubilize, transport and deposit the metals, and detoxify dyes and complex chemicals.

The toxic waste materials remain in vapor, liquid or solid phases, therefore, bioremediation technology varies accordingly whether the waste material involved is in its natural setting or is removed and transported into a fermenter (bioreactor). On the basis of removal and transportation of wastes for treatment, basically there are two methods: in situ bioremediation and ex situ bioremediation.


 

 Content

Bioremediation

 

In situ bioremediation

 

 

Intrinsic bioremediation

 

 

Engineered in situ bioremediation

 

Ex situ bioremediation

 

 

Solid phase system (composting, composting process)

 

 

Slurry phase system (aerated laggons, low shear airlift reactor)

 

 

Factors affecting slurry phase bioremediation

 

Bioremediation of hydrocarbon

 

 

Use of mixture of bacteria

 

 

Use of genetically engineered bacterial strains 

 

Bioremediation of Industrial wastes

 

 

Bioremediation of dyes

 

 

Bioremediation of heavy metals

 

 

Bioremediation of coal waste through VAM fungi

 

Bioremediation of xenobiotics

 

 

Microbial degradation of xenobiotics

 

 

Gene manipulation of pesticide-degrading microorganisms

Utilization of sewage, and agro-wastes

 

Production of single cell protein

 

Biogas from sewage

 

Mushroom production on agro-wastes

 

Vermicomposting

Microbial leaching (bioleaching)   

 

Microorganisms used in leaching

 

Chemistry of leaching

 

 

Direct leaching

 

 

Indirect leaching

 

Leaching process (slope leaching heap leaching in situ leaching)

 

Examples of bioleaching

 

 

Copper leaching

 

 

Uranium leaching

 

 

Gold and silver leaching

 

 

Silica leaching

Hazards of environmental engineering

 

Survival of released GMMs in the environment

 

 

Adaptive mutagenesis in GMMs

 

 

Gene transfer from GMMs into other microorganisms

 

 

Gene transfer via conjugative transposons

 

 

Effect of environmental factors on gene transfer

 

Ecological impact of GMMs released into the environment

 

 

Growth inhibition of natural strains

 

 

Growth stimulation of indigenous strains

 

 

Replacement of natural strains

 

Monitoring of GEMs in the environment

 

 

Risk assessment of the GEMs released into the environment


 
     
 
 
     



     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer