Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: Biotechnology Methods » Cell Biology and Genetics
 
 
Please share with your friends:  
 
 

Study of Phenocopy

 
     
 
Content
Cell Biology and Genetics
  Cell Cycles
  Meiosis in Flower Buds of Allium Cepa-Acetocarmine Stain
  Meiosis in Grasshopper Testis (Poecilocerus Pictus)
  Mitosis in Onion Root Tip (Allium Cepa)
  Differential Staining of Blood
  Buccal Epithelial Smear and Barr Body
  Vital Staining of DNA and RNA in Paramecium
  Induction of Polyploidy
  Mounting of Genitalia in Drosophila Melanogaster
  Mounting of Genitalia in the Silk Moth Bombyx Mori
  Mounting of the Sex Comb in Drosophila Melanogaster
  Mounting of the Mouth Parts of the Mosquito
  Normal Human Karyotyping
  Karyotyping
  Black and White Film Development and Printing for Karyotype Analysis
  Study of Drumsticks in the Neutrophils of Females
  Study of the Malaria Parasite
  Vital Staining of DNA and RNA in Paramecium
  Sex-Linked Inheritance in Drosophila Melanogaster
  Preparation of Somatic Chromosomes from Rat Bone Marrow
  Chromosomal Aberrations
  Study of Phenocopy
  Study of Mendelian Traits
  Estimation of Number of Erythrocytes [RBC] in Human Blood
  Estimation of Number of Leucocytes (WBC) in Human Blood
  Culturing Techniques and Handling of Flies
  Life Cycle of the Mosquito (Culex Pipiens)
  Life Cycle of the Silkworm (Bombyx Mori)
  Vital Staining of Earthworm Ovary
  Culturing and Observation of Paramecium
  Culturing and Staining of E.coli (Gram’s Staining)
  Breeding Experiments in Drosophila Melanogaster
  Preparation of Salivary Gland Chromosomes
  Observation of Mutants in Drosophila Melanogaster
  ABO Blood Grouping and Rh Factor in Humans
  Determination of Blood Group and Rh Factor
  Demonstration of the Law of Independent Assortment
  Demonstration of Law of Segregation

The strength of environmental changes is sufficient to modify the effects of many genes. In some instances, specific environmental changes may modify the development of an organism so that its phenotype stimulates the effects of particular gene, although this effect is not inherited. Such individuals are known as phenocopies.
Diabetics dependent on insulin are an example of a phenocopy of normal individuals in the sense that drug environment prevents the effects of the disease. Should their offspring also inherit diabetes? The phenocopy treatment with insulin may have to be administered again to achieve the normal phenotype.

In no sense, therefore, is the diabetic changed by the insulin treatment. There is only a phenotypic effect. By subjecting normal Drosophila eggs, larvae, and pupae to various stress conditions like temperature shock, we obtain a phenotype effect similar to that of a mutant gene. The abnormal effects incurred through these agents are almost identical to specific gene mutations, although they are not inherited. Such individuals are known as phenocopies. The phenocopy partly imitates the mutant gene.

An experiment on this problem was supported by Sang and McDonald (1954), and it allows the exposure of 2 different stocks of Drosophila flies to the phenocopy treatment. One is homozygous for wild type and the other is heterozygous for wild type and the mutant recessive gene.

The mutant recessive, if it were homozygous, would produce a morphological effect duplicated by the phenocopy. Therefore, after particular treatment, more phenocopies are noted in the heterozygous stock than in the homozygous. This may be considered as evidence that the phenocopy is controlling the developmental action.

The mutant effect will be partly duplicated by the phenocopy agent; sodium meteorite is eyeless. Other effects that may also be noted in phenocopy are changes in antennae and forelegs. Prepare sufficient media for Drosophila growth and add around 0.1 mL of silver nitrate to the 8 bottles and keep 2 bottles as control. Transfer wild, colored Drosophilas into all 10 bottles. Permit the parents to lay eggs for about 3 days and discard them. Later, examine the progeny. The silver nitrate has the effect of phenocopy agent and changes the developing larvae to colorless flies. This is not inherited.
 
     
 
 
     




     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer