Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: General Biochemistry » Nucleic Acid Synthesis
 
 
Please share with your friends:  
 
 

Chromatin Remodeling and Histone Acetylation

 
     
 
Content of Nucleic Acid Synthesis
» Nucleic Acids
» Structure and Function of Nucleic Acids
    » Basic Chemical Structure
    » Base Pairing in Nucleic Acids: Double Helical Structure of Dna
    » Size, Structure, Organization, and Complexity of Genomes
    » Information Storage, Processing, and Transfer
    » Chromosomal Dna Compaction and Its Implications in Replication and Transcription
    » DNA Sequence and Chromosome Organization
    » Repetitive Sequences: Selfish DNA
    » Chromatin Remodeling and Histone Acetylation
» Nucleic Acid Syntheses
    » Similarity of DNA and RNA Synthesis
    » DNA Replication Vs Transcription: Enzymatic Processes
    » Multiplicity of DNA and RNA Polymerases
» DNA Replication and Its Regulation
    » DNA Replication
    » Regulation of DNA Replication
    » Regulation of Bacterial DNA Replication at the Level of Initiation
    » DNA Chain Elongation and Termination in Prokaryotes
    » General Features of Eukaryotic DNA Replication
    » Licensing of Eukaryotic Genome Replication
    » Fidelity of DNA Replication
    » Replication of Telomeres—The End Game
    » Telomere Shortening: Linkage Between Telomere Length and Limited Life Span
» Maintenance of Genome Integrity
» DNA Manipulations and their Applications
» Transcriptional Processes
    » Recognition of Prokaryotic Promoters and Role of S-Factors
    » Regulation of Transcription in Bacteria
    » Eukaryotic Transcription
    » RNA Splicing in Metazoans
    » Regulation of Transcription in Eukaryotes
    » Fidelity of Transcription (RNA Editing)
» Chemical Synthesis of Nucleic Acids (Oligonucleotides)
» Bibliography of Nucleic Acid Synthesis
In order to make theDNAtemplate available for both replication and transcription, the chromatin is “remodeled.” One way to accomplish this reversible process is by altering the electrostatic interaction with histone. Acetylation of lysine residues (and to some extent phosphorylation of serine and threonine residues) reduces the binding affinity of histones with DNA in nucleosome cores and may thus allow exposure of free DNA to the transcriptional machinery. Additionally, a more complex energy-driven process involving the proteins SNF1 andSWIcauses a major alteration of the chromatin structure, which is necessary for reprogramming of the transcriptional regimen during growth, development, and associated differentiation. DNA replication also requires access of DNA in free form to the replication machinery and, therefore, may also be dependent on the same remodeling process and could even require dissociation and reassociation of the nucleosome core.
 
     
 
 
     



     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer