Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: General Biochemistry » Protein Folding
 
 
Please share with your friends:  
 
 

Closing Comments

 
     
 

The empirical approaches mentioned above have afforded great insight into the transition from a linear sequence of amino acids into a final tertiary structure. Researchers in the field continue to pioneer new techniques that give insight into the complex inter- and intramolecular interactions that dictate structure and function of proteins. These efforts coupled with computational approaches are helping to reveal the rules that nature uses to create the complex and unique structure of proteins.











 
     
 
 
     



     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer