Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: Genetics » Mutations » Biochemical Level (Biochemical and Microbial Genetics)
 
 
Please share with your friends:  
 
 

Calculation of mutation rates and frequencies

 
     
 
Content
Mutations : 2.  Biochemical Level (Biochemical and Microbial Genetics)
Inborn errors of metabolism in man
Eye transplantation in Drosophila
Biochemical mutations in Neurospora
Mutations in E. coli for resistance against phages or antibiotics
Cell counting in suspension
Calculation of mutation rates and frequencies
Biochemical mutations and biosynthetic pathways
Gene sequences and enzyme sequences in biosynthetic pathways
In the experiment of Luria and Delbruck described earlier, 20 culture tubes (0.2 ml) were used for study of mutations for resistance against T1phage. In this case 11 out of 21 tubes had no mutant cells. If frequencies of culture tubes showing 1, 2, 3, ... 100 (or more) mutant colonies are worked out, they exhibit a Poisson distribution (mean frequency of class with no mutations = 11/20). In Figure 21.2, it can be seen that when we start with one cell, number of cell divisions = n - 1 (n = number of cells at the end). Therefore, if n is very high (108 per ml) relative to very small original number, then n gives a sufficiently accurate estimate of cell divisions. Now, if mutation rate per cell division is assumed to be μ, mutation events per tube will be μx n = μn. According to Poisson distribution f(0) = e-m = en. Therefore, f(0) = 11/20 = 0.55 = e-μ(0.2x 108); (as in e raised to - μ(0.2x 108)) which gives μ = 3 x 10-8 mutations per cell division. Mutation frequency, on the other hand is calculated as (mutants in all 20 tubes)/ (20 x 0.2 x 108), which was found to be 5.7 x 10-7 per cell (for Poisson Distribution, consult Linkage and Crossing Over in Diploid Organisms (Higher Eukaryotes))
 
     
 
 
     




     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer