Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: Horticulture » Propagation and Breeding
 
 
Please share with your friends:  
 
 

Tissue Culture

 
     
 
Content
Propagation and Breeding
  Propagation of New Plants From Seeds
  Specialized Flowers and Pollination
  Propagation From Cuttings
  Tissue Culture
  Transplanting
  Plant Breeding

Some ornamental plants, including orchids and most transgenic crops, are reproduced by tissue culture (Figure 3.4). This involves the infliction of a wound to the parent plant so that it forms a callus from parenchyma cells. Parenchyma cells are most similar to meristem cells and represent up to 80% of all the cells in the plant. Meristem cells have a large nucleus and can repeatedly divide to produce daughter cells. Meristem cells are the plant equivalent of animal stem cells and are found in the meristem region at the tips of roots and shoots and in seeds. It is only when meristem cells migrate out of the meristem region that they differentiate into specialized cells that make up the rest of the plant. Once a meristem cell differentiates, it generally will not divide again, but parenchyma cells can divide in response to a wound and produce a callus, which is a mass of undifferentiated cells. These undifferentiated cells from the callus can be induced to differentiate into the specialized cells that will produce a fullgrown plant.

Round-leaved sundews
Figure 3.4 Round-leaved sundews
(Drosera rotundifolia) are grown
from tissue cultures on a gelatin media
in a petri dish. In this process, known
as micropropagation, clones are grown
from single cells of a callus that formed
from a wound inflicted on the parent plant.
The callus will generate a somatic embryo when grown on a nutritious gelatinous media supplemented with hormones. First, the callus is placed in a receptacle called a petri dish that contains a mix of chemical nutrients, high concentrations of cytokinin, and low concentrations of auxin, all of which have been solidified with gelatin. This ratio of high cytokinin to low auxin promotes shoot growth. After the shoots are formed, the plantlets are transferred to a second petri dish with a high auxin to low cytokinin ratio, which induces root growth. After root generation, they are transferred to potting soil.
 
     
 
 
     




     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer