Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: Plant Nutrition » Micronutrients » Iron
 
 
Please share with your friends:  
 
 

References

 
     
 
Content
Historical Information
  Determination of Essentiality
Functions in Plants
Forms and Sources of Iron in Soils
Diagnosis of Iron Status in Plants
  Iron Deficiency
  Iron Toxicity
Iron Concentration in Crops
  Plant Part and Growth Stage
  Iron Requirement of Some Crops
  Iron Levels in Plants
    - Iron Uptake
    - Movement of Iron within Plants
Factors Affecting Plant Uptake
  Soil Factors
  Plant Factors
Soil Testing for Iron
Fertilizers for Iron
References

  1. E. Molz. Untersuchungen über die Chlorose der Reben. Jena: Gustav Fischer Verlag, 1907.

  2. E.J. Hewitt, T.A. Smith. Plant Mineral Nutrition. London: The English Universities Press, 1975, p. 16.

  3. H. Molisch. Die Pflanze in ihren Beziehungen zum Eisen. Jena: Gustav Fischer Verlag. 1892.

  4. A. Wallace, D. Lunt. Iron chlorosis in horticultural plants, a review. Am. Soc. Hortic. Sci. 75:819-841, 1960.

  5. R.L. Chaney, J.C. Brown, L.O. Tiffin. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol. 50:208-213, 1972.

  6. S. Takagi. Naturally occurring iron-chelating compounds in oat- and rice-root washings. I. Activity measurement and preliminary characterization. Soil Sci. Plant Nutr. 22:423-433, 1976.



  7. J.C. Brown. Mechanism of iron uptake by plants. Plant Cell Environ. 1:249-257, 1978.

  8. H. Marschner, V. Römheld, M. Kissel. Different strategies in higher plants in mobilization and uptake of iron. J. Plant Nutr. 9:695-713, 1986.

  9. H.F. Bienfait, F. van der Mark. Phytoferritin and its role in iron metabolism. In: D.A. Robb, W.S. Pierpoint, eds. Metals and Micronutrients. Uptake and Utilization by Plants. London: Academic Press: London, 1983, pp. 111-123.

  10. H. Marschner. Mineral Nutrition of Higher Plants. London: Academic Press, 1995.

  11. N. Terry, J. Abadia. Function of iron in chloroplasts. J. Plant Nutr. 9:609-646, 1986.

  12. N.K. Fageria, V.C. Baligar, R.B. Clark. Micronutrients in crop production. In: D.L. Sparks, ed. Advances in Agronomy. San Diego: Academic Press, 2002, pp. 185-268.

  13. V. Römheld, H. Marschner. Mobilization of iron in the rhizosphere of different plant species. In: B. Tinker, A. Läuchli, eds. Advances in Plant Nutrition. Vol. 2, New York: Praeger, 1986, pp. 155-204.

  14. W.L. Lindsay, A.P. Schwab. The chemistry of iron in soils and its availability to plants. J. Plant Nutr. 5:821-840, 1982.

  15. J. Gerke. Orthophosphate and organic phosphate in the soil solution of four sandy soils in relation to pH. Evidence for humic-Fe(Al)-phosphate complexes. Commun. Soil Sci. Plant Anal. 23:601-612, 1992.

  16. M.O. Olomu, G.J. Racz, C.M. Cho. Effect of flooding on the Eh, pH and concentrations of Fe and Mn in several Manitoba soils. Soil Sci. Soc. Am. Proc. 37:220-224, 1973.

  17. P.E. Powell, P.J. Staniszlo, G.R. Cline, C.P.P. Reid. Hydroxamate siderophores in the iron nutrition of plants. J. Plant Nutr. 5:653-673, 1982.

  18. S. Cesco, V. Römheld, Z. Varanini, R. Pinton. Solubilization of iron by water-extractable humic substances. J. Soil Sci. Plant Nutr. 163:285-290, 2000.

  19. A.S. Mashhady, D.L. Rowell. Soil alkalinity. II. The effects of Na2CO3 on iron and manganese supply to tomatoes. J. Soil Sci. 29:367-372, 1978.

  20. G. Welp, U. Herms, G. Brümmer. Influence of soil reaction, redox conditions and organic matter on the phosphate content of soil solutions. Z. Pflanzen Boden 146:38-52, 1983.

  21. G. Trolldenier. Secondary effects of potassium and nitrogen nutrition of rice: change in microbial activity and iron reduction in the rhizosphere. Plant Soil 38:267-279, 1973.

  22. G. Julian, H.J. Cameron, R.A. Olsen. Role of chelation by ortho dihydroxy phenols in iron absorption by plant roots. J. Plant Nutr. 6:163-175, 1983.



  23. H. Oki, K. SuYeon, H. Nakanishi, M. Takahashi, H. Yamaguchi, S. Mori, N.K. Nishizawa. Directed evolution of yeast ferric reductase to produce plants with tolerance to iron deficiency in alkaline soils. Soil Sci. Plant Nutr. 50:1159-1165, 2004.

  24. M. Vasconcelos, V. Musetti, C.M. Li, S.K. Datta, M.A. Grusak. Functional analysis of transgenic rice (Oryza sativa L.) transformed with an Arabidopsis thaliana ferric reductase (AtFRO2). Soil Sci. Plant Nutr. 50:1151-1157, 2004.

  25. F.R. Troeh, L.M. Thompson. Soils and Soil Fertility. 6th ed. Ames, Iowa: Blackwell, 2005, p. 293.

  26. C.R. Lee. Interrelationships of aluminum and manganese on the potato plant. Agron. J. 64:546-549, 1972.

  27. C. Bould, E.J. Hewitt, P. Needham. Diagnosis of Mineral Disorders in Higher Plants. Volume 1. Principles. London: Her Majesty's Stationery Office, 1983.

  28. E.A. Kirkby, V. Römheld. Micronutrients in Plant Physiology: Functions, Uptake and Mobility. Proceedings No. 543, International Fertiliser Society, Cambridge UK, 9th December 2004, pp. 1-54.

  29. W. Bergmann. Nutritional Disorders of Plants. Visual and Analytical Diagnosis. Jena: Gustav Fischer Verlag, 1992, p. 15.

  30. M. Yamauchi. Rice bronzing in Nigeria caused by nutrient imbalances and its control by potassium sulfate application. Plant Soil 117:275-286, 1989.

  31. B.A. Goodman, P.C. DeKock. Mössbauer studies of plant material. I. Duckweed, stocks, soybeans and pea. J. Plant Nutr. 5:345-353, 1982.

  32. B.N. Smith. Iron in higher plants: storage and metabolic rate. J. Plant Nutr. 7:759-766, 1984.

  33. S. Lobréaux, J.F. Briat. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem. J. 274:601-606, 1991.

  34. O. Strasser, K. Köhl, V. Römheld. Overestimation of apoplastic Fe in roots of soil grown plants. Plant Soil 210:179-187, 1999.

  35. N. Rodriguez, N. Menendez, J. Tornero, R. Amils, V. de la Fuente. Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization. New Phytol. 165:781-789, 2005.

  36. K. Venkat-Raju, H. Marschner. Inhibition of iron-stress reactions in sunflower by bicarbonate. Z. Pflanzen Bodenk 144:339-355, 1981.



  37. M. Häussling, V. Römheld, H. Marschner. Beziehungen zwischen Chlorosegrad, Eisengehalten und Blattwachstum von Weinreben auf verschiedenen Standorten. Vitis 24:158-168, 1985.

  38. V. Römheld. The chlorosis paradox: Fe inactivation as a secondary event in chlorotic leaves of grapevine. J. Plant Nutr. 23:1629-1643, 2000.

  39. F. Morales, R. Grasa, A. Abadía, J. Abadía. Iron chlorosis paradox in fruit trees. J. Plant Nutr. 21:815-825, 1998.

  40. J. Abadía, A. Álvarez-Fernández, A.D. Rombolà, M. Sanz, M. Tagliavini, A. Abadía. Technologies for the diagnosis and remediation of Fe deficiency. Soil Sci. Plant Nutr. 50:965-971, 2004.

  41. G.A. O'Connor, W.L. Lindsay, S.R. Olsen. Diffusion of iron and iron chelates in soil. Soil Sci. Soc. Am. Proc. 35:407-410, 1971.

  42. R.L. Chaney. Diagnostic practices to identify iron deficiency in higher plants. J. Plant Nutr. 1984, 7:46-67, 1984.

  43. V. Römheld. Different strategies for iron acquisition in higher plants. Plant Physiol. 70:231-234, 1987.

  44. N. von Wirén, S. Mori, H. Marschner, V. Römheld. Iron inefficiency in maize mutant ysl (Zea mays L. cv Yellow Stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol. 106:71-77, 1994.

  45. N. von Wirén, H. Marschner, V. Römheld. Root of iron-efficient maize also absorb phytosiderophorechelated zinc. Plant Physiol. 111:1119-1125, 1996.

  46. H. Bienfait. Prevention of stress in iron metabolism of plants. Acta Bot. Neerl 38:105-129, 1989.

  47. M. Shenker, R. Ghirlando, I. Oliver, M. Helman, Y. Hadar, Y. Chen. Chemical structure and biological activity of a siderophore produced by Rhizopus arrhizus. Soil Sci. Soc. Am. J. 59:837-843, 1995.

  48. Z. Yehuda, M. Shenker, V. Römheld, H. Marschner,Y. Hadar,Y. Chen. The role of ligand exchange in the uptake of iron from microbial siderophores by graminaceous plants. Plant Physiol. 112:1273-1280, 1996.

  49. K. Venkat-Raju, H. Marschner, V. Römheld. Effect of iron nutritional status on ion uptake, substrate pH and production and release of organic acids and riboflavin by sunflower plants. Z. Pflanzen Boden 132:177-190, 1972.

  50. J.C. Brown,W.E. Jones. pH changes associated with iron-stress response. Physiol. Plant 30:148-152, 1974.

  51. E.C. Landsberg. Organic acid synthesis and release of hydrogen ions in response to Fe deficiency stress of mono- and dicotyledonous plant species. J. Plant Nutr. 3:579-591, 1981.

  52. V. Römheld. Existence of two different strategies for the acquisition of iron and other micronutrients in graminaceous species. In: G. Winkelmann, D. van der Helm, J.B. Neilands, eds. Iron Transport in Microbes, Plants and Animals. Weinheim: VCH, 1987, pp. 353-374.

  53. W. Schmidt. From faith to fate: ethylene signalling in morphogenic responses to P and Fe deficiency. J. Plant Nutr. Soil Sci. 164:147-154, 2001.

  54. G.A. Alloush, J. Le Bot, F.E. Sanders, E.A. Kirkby. Mineral nutrition of chickpea plants supplied with NO3 or NH4-N. I. Ionic balance in relation to iron stress. J. Plant Nutr. 13:1575-1590, 1990.

  55. C.R. Stocking. Iron deficiency in maize. Plant Physiol. 55:626-631, 1975.

  56. R.A. Olsen, J.H. Bennett, D. Blune, J.C. Brown. Chemical aspects of the Fe stress response mechanism in tomatoes. J. Plant Nutr. 3:905-921, 1981.

  57. N.H. Hether, N.R. Olsen, L.L. Jackson. Chemical identification of iron reductants exuded by plant roots. J. Plant Nutr. 7:667-676, 1984.

  58. M.J. Holden, D.G. Luster, R.L. Chaney, T.J. Buckhout, C. Robinson. Fe3+-chelate reductase activity of plasma membranes isolated from tomato (Lycopersicon esculentum Mill.) roots. Plant Physiol. 97:537-544, 1991.

  59. M.A. Grusak, R.M. Welch, L.V. Kochian. Physiological characterization of a single-gene mutant of Pisum sativum exhibiting excess iron accumulation. 1. Root iron reduction and iron uptake. Plant Physiol. 93:976-981, 1990.

  60. Y. Yi, M.L. Guerinot. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J. 10:835-844, 1996.

  61. E.L. Connolly, N.H. Campbell, N. Grotz, C.L. Pritchard, M.L. Guerinot. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol. 133:1102-1110, 2003.

  62. D. Eide, M. Broderius, J. Fett, M.L. Guerinot. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. USA 93:5624-5628, 1996.

  63. N.J. Robinson, C.M. Procter, E.L. Connolly, M.L. Guerinot. A ferric-chelate reductase for iron uptake from soils. Nature 397:694-697, 1999.

  64. S. Takagi, K. Nomoto, T. Takemoto. Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr. 7:469-477, 1984.

  65. H. Marschner, V. Römheld, M. Kissel. Localization of phytosiderophore release and of iron uptake along intact barley roots. Physiol. Plant 71:157-162, 1987.

  66. V. Römheld, H. Marschner. Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores. Plant Soil 123:147-153, 1990.

  67. R. Pinton, S. Cesco, S. Santi, F. Agnolon, Z. Varanini. Water extractable humic substances enhance iron deficiency responses to Fe-deficient cucumber plants. Plant Soil 210:145-157, 1999.

  68. S. Cesco, M. Nikolic, V. Römheld, Z. Varanini, R. Pinton. Uptake of 59Fe from soluble 59Fe-humate complexes by cucumber and barley plants. Plant Soil 241:121-128, 2002.

  69. T. Zaharieva, V. Römheld. Specific Fe2+ uptake system in Strategy 1 plants inducible under Fe deficiency. J. Plant Nutr. 23:1733-1744, 2000.

  70. S. Fiedler, O. Strasser, G. Neumann, V. Römheld. The influence of redox conditions in soils on extraplasmatic Fe-loading of plant roots. Plant Soil 264:159-169, 2004.

  71. J.L. Hall, L.E. Williams. Transition metal transporters in plants. J. Exp. Bot. 54:2601-2613, 2003.

  72. V. Römheld, G. Schaaf. Iron transport in plants: a future research in view of a plant nutritionist and a molecular biologist. Soil Sci. Plant Nutr. 50:1003-1012, 2004.

  73. F.-S. Zhang, V. Römheld, H. Marschner. Diurnal rhythm of release of phytosiderophores and uptake rate of zinc in iron-deficient wheat. Soil Sci. Plant Nutr. 37:671-678, 1991.

  74. J. Schönherr, V. Fernandez, L. Schreiber. Rates of cuticular penetration of chelated FeIII: role of humidity, concentration, adjuvants, temperature, and type of chelate. J. Agric. Food Chem. 53:4484-4492, 2005.

  75. V. Fernandez, G. Winkelmann. Ebert G. Iron supply to tobacco plants through foliar application of iron citrate and ferric dimerum acid. Physiol. Plant 122:380-385, 2004.

  76. J.F. Briat, S. Lobréaux. Iron transport and storage in plants. Trends Plant Sci. 2:187-193, 1997.

  77. N. Bughio, M. Takahashi, E. Yoshimura, N.K. Nishizawa, S. Mori. Light-dependent iron transport into isolated barley chloroplasts. Plant Cell Physiol. 38:101-105, 1997.

  78. R. Shingles, M. North, R.E. McCarty. Ferrous ion transport across chloroplast inner envelope membranes. Plant Physiol. 2002, 128:1022-1030, 2002.

  79. G. Drecker. Lokalisation des spezifischen Aufnahemesystems für Fe(III)-Phytosiderophore in den Wurzeln von Gramineen. Masters thesis, Institute of Plant Nutrition, University of Hohenheim, Stuttgart, Germany, 1991.



  80. M. Nikolic, V. Römheld. Does high bicarbonate supply to roots change availability of iron in the leaf apoplast? Plant Soil 241:67-74, 2002.

  81. H. Kosegarten, B. Hoffmann, K. Mengel. Apoplastic pH and Fe3+ reduction in intact sunflower leaves. Plant Physiol. 121:1069-1079, 1999.

  82. H. Kosegarten, B. Hoffmann, K. Mengel. The paramount influence of nitrate in increasing apoplastic pH of young sunflower leaf to induce Fe deficiency chlorosis, and the re-greening effect brought about by acidic foliar sprays. J. Plant Nutr. Soil Sci. 164:155-163, 2001.

  83. M. Nikolic, V. Römheld, N. Merkt. Effect of bicarbonate on uptake and translocation of 59Fe in grapevine rootstocks differing in their resistance to iron deficiency chlorosis. Vitis 39:145-149, 2000.

  84. M. Nikolic,V. Römheld. Nitrate does not result in iron inactivation in the apoplast of sunflower leaves. Plant Physiol. 132:1303-1314, 2003.

  85. C.D. Zhang, V. Römheld, H. Marschner. Retranslocation of iron from primary leaves of bean-plants grown under iron-deficiency. J. Plant Physiol. 146:268-272, 1995.

  86. C.D. Zhang, V. Römheld, H. Marschner. Effect of primary leaves on 59Fe uptake by roots and 59Fe distribution in the shoot of iron sufficient and iron deficient bean (Phaseolus vulgaris L.) plants. Plant Soil 182:75-81, 1996.

  87. C. Curie, Z. Panaviene, C. Loulergue, S.L. Dellaporta, J.F. Briat, E.L. Walker. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346-349, 2001.

  88. G. Schaaf, U. Ludewig, B.E. Erenoglu, S. Mori, T. Kitahara, N. von Wíren. ZmYS1 funtions as a proton- coupled symporter for phytosiderophore- and nicotianamide-chelated metals. J. Biol. Chem. 279:9091-9096, 2004.

  89. R.J. DiDonato, L. Roberts, T. Sanderson, R.B. Eisley, E. Walker. Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J. 39:403-414, 2004.

  90. G. Schaaf, A. Schikora, J. Häberle, G. Vert, J.F. Briat, C. Curie, N. von Wíren. A putative function for the Arabidopsis Fe-phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol. 46:762-774, 2005.

  91. S. Koike, H. Inoue, D. Mizuno, M. Takahashi, H. Nakanishi, S. Mori, N.K. Nishizawa. OsYSL2 is a rice metal-nicotianamide transporter that is regulated by iron and expressed in the phloem. Plant J. 39:415-424, 2004.

  92. D. Douchkov, C. Gryczka, U.W. Stephan, R. Hell, H. Baumlein. Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ. 28:365-374, 2005.

  93. K. Mengel, G. Guertzen. Iron chlorosis on calcareous soils: alkaline nutritional condition as the cause for the chlorosis. J. Plant Nutr. 9:161-173, 1986.

  94. H. Kosegarten, G.H. Wilson, A. Esch. The effect of nitrate nutrition on chlorosis and leaf growth in sunflower (Helianthus annuus L.). Eur. J. Agron. 8:283-292, 1998.

  95. P. Perret, W. Koblet. Soil compaction induced iron-chlorosis in grape vineyards: presumed involvement of exogenous soil ethylene. J. Plant Nutr. 7:533-539, 1984.

  96. V. Römheld. The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130:127-134, 1991.

  97. N. von Wirén, V. Römheld, T. Shiviri, H. Marschner. Competition between micro-organisms and roots of barley and sorghum for iron accumulated in the apoplasm. New Phytol. 130:511-521, 1995.

  98. V. Römheld, H. Marschner. Rhythmic iron stress reactions in sunflower at suboptimal iron supply. Physiol. Plant 53:347-353, 1981.

  99. M. Takahashi, H. Nakanishi, S. Kawasaki, N.K. Nishizawa, S. Mori. Enhanced tolerance of rice to low iron-availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat. Biotechnol. 19:466-469, 2001.

  100. G. Neumann, V. Römheld. The release of root exudates as affected by the plant's physiological status. In: R. Pinton, Z. Varanini, P. Namiperi, eds. The Rhizosphere. Biochemistry and Organic Substances at the Soil-Plant Interface. New York: Marcel Dekker, 2000, pp. 41-93.

  101. F. Goto, T. Yoshihara, N. Shigemoto, S. Toki, F. Takaiwa. Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol. 17:282-286, 1999.

  102. P. Lucca, R. Hurrell, I. Potrykus. Fighting iron deficiency anemia with iron-rich rice. J. Am. Coll. Nutr. 21:184-190, 2002.

  103. I. Cakmak, A. Torun, E. Millet, M. Feldman, T. Fahima, A. Korol, E. Nevo, H.J. Braun, H. Ozkan. Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci. Plant Nutr. 50:1047-1054, 2004.

  104. F.R. Cox, E.J. Kamprath. Micronutrient soil tests. In: K.K. Mortvedt, P.M. Giordano, W.L. Lindsay, eds. Micronutrients in Agriculture. Madison: Soil Sci. Soc. Am., 1972, pp. 289-317.

  105. W.L. Lindsay, W.A. Norvell. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 42:421-428, 1978.

  106. H.F. Bienfait, J. Garcia-Mina, A.M. Zamareño. Distribution and secondary effects of EDDHA in some vegetable species. Soil Sci. Plant Nutr. 50:1103-1110, 2004.

  107. V. Römheld, H. Marschner. Mechanism of iron uptake by peanut plants. I. FeIII reduction, chelate splitting, and release of phenolics. Plant Physiol. 71:949-954, 1983.

  108. R. Rosado, M.C. del Campillo, M.A. Martinez, V. Barrón, J. Tarrent. Long-term effectiveness of vivianite in reducing iron chlorosis in olive trees. Plant Soil 241:139-144, 2002.

  109. A.D. Rombolà, M. Toselli, J. Carpintero, T. Ammari, M. Quartieri, J. Torrent, B. Marangoni. Prevention of iron-deficiency induced chlorosis in kiwifruit (Actinidia deliciosa) through soil application of synthetic vivianite in a calcareous soil. J. Plant Nutr. 26:2031-2041, 2003.

  110. K. Mengel, E.A. Kirkby. Principles of Plant Nutrition. 5th ed. Dordrecht: Kluwer, 2001, p. 569.

  111. V. Fernandez, G. Ebert, G. Winkelmann. The use of microbial siderophores for foliar iron application studies. Plant Soil 272:245-252, 2005.

  112. M. Shenker, I. Oliver, M. Helmann, Y. Hadar, Y. Chen. Utilization by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. J. Plant Nutr. 15:2173-2182, 1992.

  113. W. Hördt, V. Römheld, G. Winkelmann. Fusarinines and dimerum acid, mono- and dihydrate siderophores from Penicillium chrysogenum, improve iron utilisation by strategy I and strategy II plants. BioMetals 13:37-46, 2000.

  114. J.T. Moraghan, J. Padilla, J.D. Etchevers, K. Grafton, J.A. Acosta-Gallegos. Iron accumulation in seed of common bean. Plant Soil 246:175-183, 2002.

  115. J.T. Moraghan. Accumulation and within-seed distribution of iron in common bean and soybean. Plant Soil 264:287-297, 2004.

  116. J.V. Wiersma. High rates of Fe-EDDHA and seed iron concentration suggest partial solutions to iron deficiency in soybeans. Agron. J. 97:924-934, 2005.

  117. J.A. Manthey, B. Tisserat, D.E. Crowley. Root response of sterile-grown onion plants to iron deficiency. J. Plant Nutr. 19:145-161, 1996.

  118. J.C. Brown. Differential use of Fe3+ and Fe2+ by oats. Agron. J. 71:897-902, 1979.

  119. U.C. Gupta. Levels of micronutrient cations in different plant parts of various crop species. Commun. Soil Sci. Plant Anal. 21:1767-1778, 1990.

  120. R.E. Worley, B. Mullinix. Nutrient element concentration in leaves for 40 pecan cultivars. Commun. Soil Sci. Plant Anal. 24:2333-2341, 1993.

  121. U.C. Gupta, E.W. Chipman. Influence of iron and pH on the yield and iron, manganese, zinc and sulphur concentrations of carrots grown on sphagnum peat soil. Plant Soil 44:559-566, 1976.

  122. J.C. Brown, W.E. Jones. Fitting plants nutritionally to soil. II. Cotton. Agron. J. 69:405-409, 1977.

  123. R.J. Haynes. Nutrient status of apple orchards in Canterbury, New Zealand. I. Levels of soil, leaves and fruit and the prevalence of storage disorders. Commun. Soil Sci. Plant Anal. 21:903-920, 1990.

  124. A.T. Köseoglu. Investigation of relationships between iron status of peach leaves and soil properties. J. Plant Nutr. 18:1845-1859, 1995.

 
     
 
 
     



     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer