Content of Genetic Engineering of Amino Acid Metabolism in Plants
» Abstract & Keywords
» Introduction
» Glutamine, Glutamate, Aspartate, and Asparagine are Central Regulators of Nitrogen Assimilation, Metabolism, and Transport
    » GS: A highly regulated, multifunctional gene family
    » Role of the ferredoxin- and NADH-dependent GOGAT
isozymes in plant glutamate biosynthesis
    » Glutamate dehydrogenase: An enzyme with controversial
functions in plants
    » The network of amide amino acids metabolism is regulated in concert by developmental, physiological, environmental,
metabolic, and stress-derived signals
» The Aspartate Family Pathway that is Responsible for Synthesis of the Essential Amino Acids Lysine, Threonine, Methionine, and Isoleucine
    » The aspartate family pathway is regulated by several feedback inhibition loops
    » Metabolic fluxes of the aspartate family pathway are regulated by developmental, physiological, and
environmental signals
    » Metabolic interactions between AAAM and the aspartate family pathway
    » Metabolism of the aspartate family amino acids in
developing seeds: A balance between synthesis and
» Regulation of Methionine Biosynthesis
    » Regulatory role of CGS in methionine biosynthesis
    » Interrelationships between threonine and methionine biosynthesis
» Engineering Amino Acid Metabolism to Improve the Nutritional Quality of Plants for Nonruminants and Ruminants
» Future Prospects
» Summary
» Acknowledgements
» References
Ameziane, R., Bernhard, K., and Lightfoot, D. (2000). Expression of the bacterial gdhA gene encoding a NADPH glutamate dehydrogenase in tobacco affects plant growth and development. Plant Soil 221, 47–57.

Amir, R., Hacham, Y., and Galili, G. (2002). Cystathionine γ-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants. Trends Plant Sci. 7, 153–156.

Aubert, S., Bligny, R., Douce, R., Gout, E., Ratcliffe, R. G., and Roberts, J. K. M. (2001). Contribution of glutamate dehydrogenase to mitochondrial glutamate metabolism studied by 13C and 31P nuclear magnetic resonance. J. Exp. Bot. 52, 37–45.

Avraham, T., and Amir, R. (2005). Methionine and threonine regulate the branching point of their biosynthesis pathways and thus controlling the level of each other. Transgneic Res. 14, 299–311.

Bartlem, D., Lambein, I., Okamoto, T., Itaya, A., Uda, Y., Kijima, F., Tamaki, Y., Nambara, E., and Naito, S. (2000). Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis. Plant Physiol. 123, 101–110.

Ben Tzvi-Tzchori, I., Perl, A., and Galili, G. (1996). Lysine and threonine metabolism are subject to complex patterns of regulation in Arabidopsis. Plant Mol. Biol. 32, 727–734.

Bonaventure, N., Wioland, N., and Roussel, G. (1985). Stereospecific effects of the α-aminoadipic acid on the retina: A morphological and electrophysiological study. Doc. Ophthalmol. 61, 71–77.

Bourgis, F., Roje, S., Nuccio,M. L., Fisher, D. B., Tarczynski, M. C., Li, C.,Herschbach, C., Rennenberg, H., Pimenta, M. J., Shen, T.-L., Gage, D. A., Hanson, A. D., et al. (1999). S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11, 1485–1497.

Chiba, Y., Ishikawa, M., Kijima, F., Tyson, R. H., Kim, J., Yamamoto, A., Nambara, E., Leustek, T., Wallsgrove, R. M., and Naito, S. (1999). Evidence for autoregulation of cystathionine γ-synthase mRNA stability in Arabidopsis. Science 286, 1371–1374.

Chichkova, S., Arellano, J., Vance, C. P., and Hernandez, G. (2001). Transgenic tobacco plants that overexpress alfalfa NADH-glutamate synthase have higher carbon and nitrogen content. J. Exp. Bot. 52, 2079–2087.

Cordoba, E., Shishkova, S., Vance, C. P., and Hernandez, G. (2003). Antisense inhibition of NADH glutamate synthase impairs carbon/nitrogen assimilation in nodules of alfalfa (Medicago sativa L.). Plant J. 33, 1037–1049.

Coruzzi, G., and Last, R. (2000). Amino acids. In ‘‘Biochemistry and Molecular Biology of PlantsAmerican Society of Plant Physiologists’’ (B. B. Buchanan, W. Gruissem, and R. L. Jones, eds.), pp. 358–410. American Society of Plant Physiologists, Rockville, MD.

Coruzzi, G. M., and Zhou, L. (2001). Carbon and nitrogen sensing and signaling in plants: Emerging ‘matrix effects’. Curr. Opin. Plant Biol. 4, 247–253.

Coschigano, K. T., Melo-Oliveira, R., Lim, J., and Coruzzi, G. M. (1998). Arabidopsis gls mutants and distinct Fd-GOGAT genes: Implications for photorespiration and primary nitrogen assimilation. Plant Cell 10, 741–752.

Craciun, A., Jacobs, M., and Vauterin, M. (2000). Arabidopsis loss-of-function mutant in the lysine pathway points out complex regulation mechanisms. FEBS Lett. 487, 234–238.

Curien, G., Job, D., Douce, R., and Dumas, R. (1998). Allosteric activation of Arabidopsis threonine synthase by S-adenosylmethionine. Biochemistry 37, 13212–13221.

Demidov, D., Horstmann, C., Meixner, M., Pickardt, T., Saalbach, I., Galili, G., and Muntz, K. (2003). Additive effects of the feed-back insensitive bacterial aspartate kinase and the Brazil nut 2S albumin on the methionine content of transgenic narbon bean (Vicia narbonensis L.). Mol. Breed. 11, 187–201.

Eckes, P., Schmitt, P., Daub, W., and Wengenmayer, F. (1989). Overproduction of alfalfa glutamine synthetase in transgenic tobacco plants. Mol. Gen. Genet. 217, 263–268.

Falco, S. C., Guida, T., Locke, M., Mauvais, J., Sandres, C., Ward, R. T., and Webber, P. (1995). Transgenic canola and soybean seeds with increased lysine. Biotechnology 13, 577–582.

Fei, H., Chaillou, S., Hirel, B., Mahon, J. D., and Vessey, J. K. (2003). Overexpression of a soybean cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plants grown in different concentrations of nitrate. Planta 216, 467–474.

Ferrario-Mery, S., Suzuki, A., Kunz, C., Valadier, M. H., Roux, Y., Hirel, B., and Foyer, C. H. (2000). Modulation of amino acid metabolism in transformed tobacco plants deficient in Fd-GOGAT. Plant Soil 221, 67–79.

Ferrario-Mery, S., Hodges, M., Hirel, B., and Foyer, C. H. (2002a). Photorespiration-dependent increases in phosphoenolpyruvate carboxylase, isocitrate dehydrogenase and glutamate dehydrogenase in transformed tobacco plants deficient in ferredoxin-dependent glutamine-α-ketoglutarate aminotransferase. Planta 214, 877–886.

Ferrario-Mery, S., Valadier, M.-H., Godefroy, N., Miallier, D., Hirel, B., Foyer, C. H., and Suzuki, A. (2002b). Diurnal changes in ammonia assimilation in transformed tobacco plants expressing ferredoxin-dependent glutamate synthase mRNA in the antisense orientation. Plant Sci. 163, 59–67.

Finnemann, J., and Schjoerring, J. K. (2000). Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14–3–3 protein interaction. Plant J. 24, 171–181.

Frankard, V., Ghislain, M., and Jacobs, M. (1992). Two feedback-insensitive enzymes of the aspartate pathway in Nicotiana sylvestris. Plant Physiol. 99, 1285–1293.

Fuentes, S. I., Allen, D. J., Ortiz-Lopez, A., and Hernandez, G. (2001). Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J. Exp. Bot. 52, 1071–1081.

Gakiere, B., Denis, L., Droux, M., Ravanel, S., and Job, D. (2000). Methionine synthesis in higher plants: Sense strategy applied to cystathionine γ-synthase and cystathionine β-lyase in Arabidopsis thaliana. In ‘‘Sulfur Nutrition and Sulfur Assimilation in Higher Plants’’ (C. Brunold, ed.), pp. 313–315. Paul Haupt, Bern, Switzerland.

Galili, G. (1995). Regulation of lysine and threonine synthesis. Plant Cell 7, 899–906.

Galili, G. (2002). New insights into the regulation and functional significance of lysine metabolism in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 53, 27–43.

Galili, G., and Hofgen, R. (2002). Metabolic engineering of amino acids and storage proteins in plants. Metab. Eng. 4, 3–11.

Galili, G., Shaul, O., Perl, A., and Karchi, H. (1995). Synthesis and accumulation of the essential amino acids lysine and threonine in seeds. In ‘‘Seed Development and Germination’’ (J. Kigel and G. Galili, eds.), pp. 811–831. Marcel Dekker, New York.

Galili, G., Tang, G., Zhu, X., and Gakiere, B. (2001). Lysine catabolism: A stress and development superregulated metabolic pathway. Curr. Opin. Plant Biol. 4, 261–266.

Galili, G., Galili, S., Lewinsohn, E., and Tadmor, Y. (2002). Genetic, molecular and genomic approaches to improve the value of plant foods and feeds. Critical Rev. Plant Sci. 21, 167–204.

Gallardo, F., Fu, J., Canton, F. R., Garcia-Gutierrez, A., Canovas, F. M., and Kirby, E. G. (1999). Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19–26.

Giovanelli, J., Mudd, S. H., and Datko, A. H. (1985). Quantitative analysis of pathways of methionine metabolism and their regulation in Lemna. Plant Physiol. 78, 555–560.

Goto, D. B., Ogi, M., Kijima, F., Kumagai, T., Van Werven, F., Onouchi, H., and Naito, S. (2002). A single-nucleotide mutation in a gene encoding S-adenosylmethionine synthetase is associated with methionine over-accumulation phenotype in Arabidopsis thaliana. Genes Genet. Syst. 77, 89–95.

Guenoune, D., Amir, R., Ben-Dor, B., Wolf, S., and Galili, S. (1999).A soybean vegetative storage protein accumulates to high levels in various organs of transgenic tobacco plants. Plant Sci. 145, 93–98.

Guenoune, D., Amir, R., Badani, H., Wolf, S., and Galili, S. (2002a). Combined expression of S-VSPa in two different organelles enhances its accumulation and total lysine production in leaves of transgenic tobacco plants. J. Exp. Bot. 53, 1867–1870.

Guenoune, D., Landau, S., Amir, R., Badani, H., Devash, L., Wolf, S., and Galili, S. (2002b). Resistance of soybean vegetative storage proteins (S-VSPs) to proteolysis by rumen microorganisms. J. Agric. Food Chem. 50, 2256–2260.

Guenoune, D., Amir, R., Badani, H., Wolf, S., and Galili, S. (2003). Coexpression of the soybean vegetative storage protein b subunit (S-VSPb) either with the bacterial feedback-insensitive dihydrodipicolinate synthase or with S-VSPa stabilizes the S-VSPb transgene protein and enhances lysine production in transgenic tobacco plants. Transgenic Res. 12, 123–126.

Habash, D. Z., Massiah, A. J., Rong, H. L., Wallsgrove, R. M., and Leigh, R. A. (2001). The role of cytosolic glutamine synthetase in wheat. Ann. Appl. Biol. 138, 83–89.

Hacham, Y., Avraham, T., and Amir, R. (2002). The N-terminal region of Arabidopsis cystathionine γ-synthase plays an important role in methionine metabolism. Plant Physiol. 128, 454–462.

Hagan, N. D., Upadhyaya, N., Tabe, L. M., and Higgins, T. J. V. (2003). The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign sulfur-rich protein. Plant J. 34, 1–11.

Hirel, B., and Lea, P. J. (2001). Ammonia assimilation. In ‘‘Plant Nitrogen’’ (P. J. Lea and J.-F. Morot- Gaudry, eds.), pp. 79–99. Springer-Verlag, Berlin.

Hirel, B., Marsolier, M. C., Hoarau, A., Hoarau, J., Brangeon, J., Schafer, R., and Verma, D. P. S. (1992). Forcing expression of a soybean root glutamine synthetase gene in tobacco leaves induces a native gene encoding cytosolic enzyme. Plant Mol. Biol. 20, 207–218.

Hunter, B. G., Beatty, M. K., Singletary, G. W., Hamaker, B. R., Dilkes, B. P., Larkins, B. A., and Jung, R. (2002). Maize opaque endosperm mutations create extensive changes in patterns of gene expression. Plant Cell 14, 2591–2612.

Inaba, K., Fujiwara, T., Hayashi, H., Chino, M., Komeda, Y., and Naito, S. (1994). Isolation of an Arabidopsis thaliana mutant, mto1, that overaccumulates soluble methionine. Temporal and spatial patterns of soluble methionine accumulation. Plant Physiol. 104, 881–887.

Ireland, R. J., and Lea, P. J. (1999). The enzymes of glutamine, glutamate, asparagine, and aspartate metabolism. In ‘‘Plant Amino Acids: Biochemistry and Biotechnology’’ (B. K. Singh, ed.), pp. 49–109. Marcel Dekker, New York.

Jacobs, M., Negrutiu, I., Dirks, R., and Cammaerts, D. (1987). Selection programs for isolation and analysis of mutants in plant cell cultures. In ‘‘Plant Biology’’ (C. E. Green, D. A. Somers, W. P. Hackett, and D. D. Biesboer, eds.), pp. 243–264. Alan R. Liss, New York.

Jacobs, M., Vauterin, M., De Waele, E., and Craciun, A. (2001). Manipulating plant biochemical pathways for improved nutritional quality. In ‘‘Plant Biotechnology and Transgenic Plants’’ (Oksman- Caldentey and Barz, eds.), pp. 233–253. Marcel Dekker, New York.

Jiang, Q., and Gresshoff, P. M. (1997). Classical and molecular genetics of the model legume Lotus japonicus. Mol. Plant Micr. Interac. 10, 59–68.

Jung, R., and Falco, S. C. (2000). Transgenic corn with an improved amino acid composition. In ‘‘Eighth International Symposium on Plant Seeds.’’ Gatersleben, Germany.

Karchi, H., Shaul, O., and Galili, G. (1993). Seed-specific expression of a bacterial desensitized aspartate kinase increases the production of seed threonine and methionine in transgenic tobacco. Plant J. 3, 721–727.

Karchi, H., Shaul, O., and Galili, G. (1994). Lysine synthesis and catabolism are coordinately regulated during tobacco seed development. Proc. Natl. Acad. Sci. USA 91, 2577–2581.

Karlsen, R. L., Pedersen, O. O., Schousboe, A., and Langeland, A. (1982). Toxic effects of DL α-aminoadipic acid on muller cells from rats in vivo and cultured cerebral astrocytes. Exp. Eye. Res. 35, 305–311.

Kemper, E. L., Neto, G. C., Papes, F.,Moraes, K. C. M., Leite, A., and Arruda, P. (1999). The role of opaque2 in the control of lysine-degrading activities in developing maize endosperm. Plant Cell 11, 1981–1993.

Kim, J., and Leustek, T. (2000). Repression of cystathionine γ-synthase in Arabidopsis thaliana produces partial methionine auxotrophy and developmental abnormalities. Plant Sci. 151, 9–18.

Kim, J., Lee, M., Chalam, R., Martin, M. N., Leustek, T., and Boerjan, W. (2002). Constitutive overexpression of cystathionine γ-synthase in Arabidopsis leads to accumulation of soluble methionine and S-methylmethionine. Plant Physiol. 128, 95–107.

Kishor, P. B. K., Hong, Z., Miao, G.-H., Hu, C.-A. A., and Verma, D. P. S. (1995). Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108, 1387–1394.

Kocsis, M. G., Ranocha, P., Gage, D. A., Simon, E. S., Rhodes, D., Peel, G. J., Mellema, S., Saito, K., Awazuhara, M., Li, C., Meeley, R. B., Tarczynski, M. C., et al. (2003). Insertional inactivation of the methionine S-methyltransferase gene eliminates the S-methylmethionine cycle and increases the methylation ratio. Plant Physiol. 131, 1808–1815.

Kreft, O., Hoefgen, R., and Hesse, H. (2003). Functional analysis of cystathionine γ-synthase in genetically engineered potato plants. Plant Physiol. 131, 1843–1854.

Lai, J., and Messing, J. (2002). Increasing maize seed methionine by mRNAstability. Plant J. 30, 395–402.

Lam, H.-M., Coschigano, K., Schultz, C., Melo-Oliveira, R., Tjagen, G., Oliveira, I., Ngai, N., Hsieh, M.-H., and Coruzzi, G. (1995). Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis,. Plant Cell 7, 887–898.

Lam, H.-M., Coschigano, K. T., Oliveira, I. C., Melo-Oliveira, R., and Coruzzi, G. M. (1996). The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 569–593.

Lam, H.-M., Hsieh, M.-H., and Coruzzi, G. (1998). Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. Plant J. 16, 345–353.

Lancien, M., Martin, M., Hsieh, M.-H., Leustek, T., Goodman, H., and Coruzzi, G. M. (2002). Arabidopsis glt1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway. Plant J. 29, 347–358.

Lawlor, D. W., Lemaire, G., and Gastal, F. (2001). Nitrogen, plant growth and crop yield. In ‘‘Plant Nitrogen’’ (P. J. Lea and J.-F. Morot-Gaudry, eds.), pp. 343–367. Springer-Verlag, Berlin.

Lea, P. J., and Ireland, R. J. (1999). Nitrogen metabolism in higher plants. In ‘‘Plant Amino Acids: Biochemistry and Biotechnology’’ (B. K. Singh, ed.), pp. 1–47. Marcel Dekker, New York.

Lee, J.-M., Williams, M. E., Tingey, S. V., and Rafalski, J. A. (2002). DNA array profiling of gene expression changes during maize embryo development. Funct. Integr. Genomics 2, 13–27.

Leng, R. A. (1990). Factors affecting the utilization of ‘‘poor quality’’ forages by ruminants particularly under tropical conditions. Nutr. Res. Rev. 3, 277–303.

Li, J., and Last, R. L. (1996). The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol. 110, 51–59.

Limami, A., Phillipson, B., Ameziane, R., Pernollet, N., Jiang, Q., Roy, R., Deleens, E., Chaumont- Bonnet, M., Gresshoff, P. M., and Hirel, B. (1999). Does root glutamine synthetase control plant biomass production in Lotus japonicus L.? Planta 209, 495–502.

Limami, A. M., and De Vienne, D. (2001). Natural genetic variability of nitrogen metabolism. In ‘‘Plant Nitrogen’’ (P. J. Lea and J.-F. Morot-Gaudry, eds.), pp. 369–378. Springer-Verlag, Berlin. Masclaux, C., Valadier, M.-H., Brugiere, N., Morot-Gaudry, J.-F., and Hirel, B. (2000). Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211, 510–518.

Mazur, B., Krebbers, E., and Tingey, S. (1999). Gene discovery and product development for grain quality traits. Science 285, 372–375.

Mcnabb, W. C., Spencer, D., Higgins, T. J., and Barry, T. N. (1994). In-vitro rates of rumen proteolysis of ribulose-1,5-bisphosphate carboxylase (Rubisco) from lucerne leaves, and of ovalbumin, vicilin and sunflower albumin 8 storage proteins. J. Sci. Food Agric. 64, 53–61.

Meers, J. L., Tempest, D. W., and Brown, C. M. (1970). Glutamine/(amide): 2-oxoglutarate amino transferase oxido-reductase (NADP), an enzyme involved in the synthesis of glutamate by some bacteria. J. Gen. Microbiol. 64, 187–194.

Melo-Oliveira, R., Oliveira, I. C., and Coruzzi, G. M. (1996). Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc. Natl. Acad. Sci. USA 93, 4718–4723.

Miflin, B. J., and Habash, D. Z. (2002). The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J. Exp. Bot. 53, 979–987.

Miyazaki, J. H., and Yang, S. F. (1987). The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiol. Plantarum 69, 366–370.

Molvig, L., Tabe, L. M., Eggum, B. O., Moore, A. E., Craig, S., Spencer, D., and Higgins, T. J. V. (1997). Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc. Natl. Acad. Sci. USA 94, 8393–8398.

Moorhead, G., Douglas, P., Cotelle, V., Harthill, J., Morrice, N., Meek, S., Deiting, U., Stitt, M., Scarabel, M., Aitken, A., and Mackintosh, C. (1999). Phosphorylation-dependent interactions between enzymes of plant metabolism and 14–3–3 proteins. Plant J. 18, 1–12.

Morot-Gaudry, J.-F., Dominique, J., and Lea, P. J. (2001). Amino acid metabolism. In ‘‘Plant Nitrogen’’ (P. J. Lea and J.-F. Morot-Gaudry, eds.), pp. 167–211. Springer-Verlag, Berlin. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461, 205–210.

National Research Council (2001). ‘‘Nutrient Requirements of Dairy Cattle 7th,’’ p. 381. Noctor, G., Novitskaya, L., Lea, P. J., and Foyer, C. H. (2002). Co-ordination of leaf minor amino acid contents in crop species: Significance and interpretation. J. Exp. Bot. 53, 939–945.

Oliveira, I. C., Brenner, E., Chiu, J., Hsieh, M.-H., Kouranov, A., Lam, H.-M., Shin, M. J., and Coruzzi, G. (2001). Metabolic and light regulation of metabolism in plants: Lessons from study of a single biochemical pathway. Brazilian J. Med. Biol. Res. 34, 567–575.

Oliveira, I. C., Brears, T., Knight, T. J., Clark, A., and Coruzzi, G. M. (2002). Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration. Plant Physiol. 129, 1170–1180.

Onouchi, H., Nagami, Y., Haraguchi, Y., Nahkamoto, M., Nishimura, Y., Sakurai, R., Nagao, N., Kawasaki, D., Kadokura, Y., and Naito, S. (2005). Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev. 19, 1799–1810.

Ortega, J. L., Temple, S. J., and Sengupta-Gopalan, C. (2001). Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover. Plant Physiol. 126, 109–121.

Ranocha, P., Mcneil, S. D., Ziemak, M. J., Li, C., Tarczynski, M. C., and Hanson, A. D. (2001). The S-methylmethionine cycle in angiosperms: Ubiquity, antiquity and activity. Plant J. 25, 575–584.

Rao, S. S., Kochhar, S., and Kochhar, V. K. (1999). Analysis of photocontrol of aspartate kinase in barley (Hordeum vulgare L.) seedlings. Biochem. Mol. Biol. Int. 47, 347–360.

Ravanel, S., Gakiere, B., Job, D., and Douce, R. (1998a). The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. USA 95, 7805–7812.

Ravanel, S., Gakiere, B., Job, D., and Douce, R. (1998b). Cystathionine γ-synthase from Arabidopsis thaliana: Purification and biochemical characterization of the recombinant enzyme overexpressed in Escherichia coli. Biochem. J. 331, 639–648.

Reichenbach, A., and Wohlrab, F. (1985). Effects of α-aminoadipic acid on the glutamate-isolated P III of the rabbit electroretinogram. Doc. Ophthalmol. 59, 359–364.

Ruuska, S. A., Girke, T., Benning, C., and Ohlrogge, J. B. (2002). Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14, 1191–1206.

Sarrobert, C., Thibaud, M.-C., Contard-David, P., Gineste, S., Bechtold, N., Robaglia, C., and Nussaume, L. (2000). Identification of an Arabidopsis thaliana mutant accumulating threonine resulting from mutation in a new dihydrodipicolinate synthase gene. Plant J. 24, 357–367.

Schoenbeck, M. A., Temple, S. J., Trepp, G. B., Blumenthal, J. M., Samac, D. A., Gantt, J. S., Hernandez, G., and Vance, C. P. (2000). Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase transgene. J. Exp. Bot. 51, 29–39.

Shaul, O., and Galili, G. (1992a). Increased lysine synthesis in tobacco plants express high levels of bacterial dihydrodipicolinate synthase in their chloroplasts. Plant J. 2, 203–209.

Shaul, O., and Galili, G. (1992b). Threonine overproduction in transgenic tobacco plants expressing a mutant desensitized aspartate kinase of Escherichia coli. Plant Physiol. 100, 1157–1163.

Shaul, O., and Galili, G. (1993). Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol. Biol. 23, 759–768.

Shotwell, M. A., and Larkins, B. A. (1989). The biochemistry and molecular biology of seed storage proteins. In ‘‘The Biochemistry of Plants’’ (A. Marcus, ed.), pp. 297–345. Academic Press, San Diego.

Singh, B. K. (1999). Biosynthesis of valine, leucine, and isoleucine. In ‘‘Plant Amino Acids: Biochemistry and Biotechnology’’ (B. K. Singh, ed.), pp. 227–247. Marcel Dekker, New York.

Somerville, C. R., and Ogren, W. L. (1980). Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity. Nature 286, 257–259.

Staswick, P. E. (1994). Storage proteins of vegetative plant tissues. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 303–322.

Stephanopoulos, G. (1999). Metabolic fluxes and metabolic engineering. Metab. Eng. 1, 1–11. Stitt, M., Muller, C., Matt, P., Gibon, Y., Carillo, P., Morcuende, R., Scheible, W.-R., and Krapp, A. (2002). Steps towards an integrated view of nitrogen metabolism. J. Exp. Bot. 53, 959–970.

Suzuki, A., Rioual, S., Lemarchand, S., Godfroy, N., Roux, Y., Boutin, J.-P., and Rothstein, S. (2001).

Regulation by light and metabolites of ferredoxin-dependent glutamate synthase in maize. Physiologia Plantarum 112, 524–530.

Syed Rasheeduddin, A., and Mcdonald, C. E. (1974). Amino acid composition, protein fractions and baking quality of triticale. In ‘‘Triticale: First Man-Made Cereal’’ (C. C. Tsen, ed.), pp. 137–149. American Association of Cereal Chemists, Minnesota.

Tabe, L. M., and Droux, M. (2002). Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol. 128, 1137–1148.

Tabe, L., Hagan, N., and Higgins, T. J. V. (2002). Plasticity of seed protein composition in response to nitrogen and sulfur availability. Curr. Opin. Plant Biol. 5, 212–217.

Tarczynski, M. C., Bo, S., Changjiang, L., Leustek, T., Falco, C., and Allen, W. (2001). Control and manipulation of sulfur amino acid metabolism in plants. In ‘‘Plant Foods for Human Health: Manipulating Plant Metabolism to Enhance Nutritional Quality, Keystone Sympos’’ pp. 6.4–11.4. Breckenridge, Colorado.

Temple, S. J., Knight, T. J., Unkefer, P. J., and Sengupta-Gopalan, C. (1993). Modulation of glutamine synthetase gene expression in tobacco by the introduction of an alfalfa glutamine synthetase gene in sense and antisense orientation: Molecular and biochemical analysis. Mol. Gen. Genet. 236, 315–325.

Ter Steege, M. W., Stulen, I., and Mary, B. (2001). Nitrogen and the environment. In ‘‘Plant Nitrogen’’ (P. J. Lea and J.-F. Morot-Gaudry, eds.), pp. 379–397. Springer-Verlag, Berlin.

Thum, K. E., Shasha, D. E., Lejay, L. V., and Coruzzi, G. M. (2003). Light and carbon signaling pathways controlling genes in nitrogen assimilation: Modeling circuits of interaction. Plant Physiol. 132, 440–452.

Tozawa, Y., Hasegawa, H., Terakawa, T., and Wakasa, K. (2001). Characterization of rice anthranilate synthase a-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a feedback-insensitive mutant of OASA1. Plant Physiol. 126, 1493–1506.

Vauterin, M., Frankard, V., and Jacobs, M. (1999). The Arabidopsis thaliana dhdps gene encoding dihydrodipicolinate synthase, key enzyme of lysine biosynthesis, is expressed in a cell-specific manner. Plant Mol. Biol. 39, 695–708.

Vincent, R., Fraisier, V., Chaillou, S., Limami, M. A., Deleens, E., Phillipson, B., Douat, C., Boutin, J.-P., and Hirel, B. (1997). Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development. Planta 201, 424–433.

Wang, F., and Tian, B. (2001). Neurospora NADP-glutamate dehydrogenases and its expression in E. coli and transgenic plants. Chinese Sci. Bull. 46, 1029–1032.

Welinder, E., Textorius, O., and Nilsson, S. E. (1982). Effects of intravitreally injected DL-α-aminoadipic acid on the c-wave of the D.C.-recorded electroretinogram in albino rabbits. Invest. Ophthalmol. Vis. Sci. 23, 240–245.

White, C. L., Tabe, L. M., Dove, H., Hamblin, J., Young, P., Phillips, N., Taylor, R., Gulati, S., Ashes, J., and Higgins, T. J. V. (2000). Increased efficiency of wool growth and live weight gain in Merino sheep fed transgenic lupin seed containing sunflower albumin. J. Sci. Food Agric. 81, 147–154.

Zeh, M., Casazza, A. P., Kreft, O., Roessner, U., Bieberich, K., Willmitzer, L., Hoefgen, R., and Hesse, H. (2001). Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants. Plant Physiol. 127, 792–802.

Zhu-Shimoni, X. J., and Galili, G. (1998). Expression of an Arabidopsis aspartate kinase/homoserine dehydrogenase gene is metabolically regulated by photosynthesis-related signals but not by nitrogenous compounds. Plant Physiol. 116, 1023–1028.

Zhu-Shimoni, X. J., Lev-Yadun, S., Matthews, B., and Galili, G. (1997). Expression of an aspartate kinase homoserine dehydrogenase gene is subject to specific spatial and temporal regulation in vegetative tissues, flowers and developing seeds. Plant Physiol. 113, 695–706.

Zhu, X., and Galil, G. (2003). Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds. Plant Cell 15, 845–853.

Zhu, X., Tang, G., Granier, F., Bouchez, D., and Galili, G. (2001). A T-DNA insertion knockout of the bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase gene elevates lysine levels in Arabidopsis seeds. Plant Physiol. 126, 1539–1545.

Zhang, X.-H., Brotherton, J. E., Widholm, J. M., and Portis, A. R., Jr. (2001). Targeting a nuclear anthranilate synthase α-subunit gene to the tobacco plastid genome results in enhanced tryptophan biosynthesis. Return of a gene to its pre-endosymbiotic origin. Plant Physiol. 127, 131–141.