Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: Molecular Biology of Plant Pathways » Genetic Engineering of Seed Storage Proteins
 
 
Please share with your friends:  
 
 

References

 
     
 
Adachi, M., Kanamori, I., Matsuda, T., Yagasaki, K., Kitamura, K., Mikami, B., and Utsumi, S. (2003). Crystal structure of soybean 11S globulin: Glycinin A3B4 homopolymer. Proc. Natl. Acad. Sci. USA 100, 7395–7400.

Altenbach, S. B., Pearson, K. W., Meeker, G., Staraci, L. C., and Sun, S. S. M. (1989). Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methioninerich protein in transgenic plants. Plant Mol. Biol. 13, 513–522.

Altenbach, S. B., Kuo, C. C., Staraci, L. C., Pearson, K. W., Wainwright, C., Georgescu, A., and Townsend, J. (1992). Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol. Biol. 18, 235–245.

Altpeter, F., Vasil, V., Srivastava, V., and Vasil, I. K. (1996). Integration and expression of the highmolecular- weight glutenin subunit 1Ax1 gene into wheat. Nat. Biotechnol. 14, 1155–1159.

Alvarez, M. L., Guelman, S., Halford, N. G., Lustig, S., Reggiardo, M. I., Ryabushkina, N., Shewry, P., Stein, J., and Vallejos, R. H. (2000). Silencing ofHMWglutenins in transgenic wheat expressing extra HMW subunits. Theor. Appl. Genet. 100, 319–327.

Alvarez, M. L., Gomez, M., Carrillo, J. M., and Vallejos, R. H. (2001). Analysis of dough functionality of flours from transgenic wheat. Mol. Breed. 8, 103–108.

Anderson, O. D., Kuhl, J. C., and Tam, A. (1996). Construction and expression of a synthetic wheat storage protein gene. Gene 174, 51–58.

Anthony, A., Brown, W., Buhr, D., Ronhovde, G., Genovesi, D., Lane, T., Yingling, R., Aves, K., Rosato, M., and Anderson, P. (1997). Transgenic maize with elevated 10 kDa zein and methionine. In ‘‘Sulphur Metabolism in Higher Plants’’ (W. J. Cram, L. J. De Kok, I. Stulen, C. Brunold, and H. Ronnenberg, eds.), pp. 295–297. Blackhuys, Leiden.

Aragao, F. J. L., Barros, L. M. G., De Sousa, M. V., De Sa, M. F. G., Almeida, E. R. P., Gander, E. S., and Rech, E. L. (1999). Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa HBK, Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Genet. Mol. Biol. 22, 445–449.

Bagga, S., Adams, H. P., Rodriguez, F. D., Kemp, J. D., and Senguptagopalan, C. (1997). Coexpression of the maize delta-zein and beta-zein genes results in stable accumulation of delta-zein in endoplasmic reticulum-derived protein bodies formed by beta-zein. Plant Cell 9, 1683–1696.

Barro, F., Rooke, L., Bekes, F., Gras, P., Tatham, A. S., Fido, R., Lazzeri, P. A., Shewry, P. R., and Barcelo, P. (1997). Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat. Biotechnol. 15, 1295–1299.

Bellucci, M., Alpini, A., and Arcioni, S. (2000). Expression of maize gamma-zein and beta-zein genes in transgenic Nicotiana tabacum and Lotus corniculatus. Plant Cell Tissue Organ Cult. 62, 141–151.

Bellucci, M., Alpini, A., and Arcioni, S. (2002). Zein accumulation in forage species (Lotus corniculatus and Medicago sativa) and co-expression of the gamma-zein: KDEL and beta-zein: KDEL polypeptides in tobacco leaf. Plant Cell Rep. 20, 848–856.

Benner, M. S., Phillips, R. L., Kirihara, J. A., and Messing, J. (1989). Genetic analysis of methionine-rich storage protein accumulation in maize. Theor. Appl. Genet. 78, 761–767.

Bewley, J. D., and Black, M. (1995). ‘‘Seeds: Physiology of Development and Germination,’’ 2nd Edn., p. 445. Plenum Press, New York and London.

Bhan, M. K., Bhandari, N., and Bahl, R. (2003). Management of the severely malnourished child: Perspective from developing countries. Br. Med. J. 326, 146–151.

Blechl, A. E., and Anderson, O. D. (1996). Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nat. Biotechnol. 14, 875–879.

Brown, J. L., and Ping, Y. C. (2003). Consumer perception of risk associated with eating genetically engineered soybeans is less in the presence of a perceived consumer benefit. J. Am. Diet. Assoc. 103, 208–214.

Casey, R. (1999). Distribution and some properties of seed globulins. In ‘‘Seed Proteins’’ (P. Shewry and R. Casey, eds.), pp. 159–169. Kluwer Academic Publishers, Dordrecht, Boston, London.

Chakraborty, S., Chakraborty, N., and Datta, A. (2000). Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc. Natl. Acad. Sci. USA 97, 3724–3729.

Chandra, R. K. (2002). Food hypersensitivity and allergic diseases. Eur. J. Clin. Nutr. 56, S54–S56.

Christiansen, P., Gibson, J. M., Moore, A., Pedersen, C., Tabe, L., and Larkin, P. J. (2000). Transgenic Trifolium repens with foliage accumulating the high sulphur protein, sunflower seed albumin. Transgenic Res. 9, 103–113.

Clarke, B. C., Phongkham, T., Gianibelli, M. C., Beasley, H., and Bekes, F. (2003). The characterisation and mapping of a family of LMW-gliadin genes: Effects on dough properties and bread volume. Theor. Appl. Genet. 106, 629–635.

Clarke, E. J., and Wiseman, J. (2000). Developments in plant breeding for improved nutritional quality of soya beans II. Anti-nutritional factors. J. Agric. Sci. 134, 125–136.

Coleman, C. E., Herman, E. M., Takasaki, K., and Larkins, B. A. (1996). The maize gamma-zein sequesters alpha-zein and stabilizes its accumulation in protein bodies of transgenic tobacco endosperm. Plant Cell 8, 2335–2345.

Cruzalvarez, M., Kirihara, J. A., and Messing, J. (1991). Posttranscriptional Regulation of methionine content in maize kernels. Mol. Gen. Genet. 225, 331–339.

Dale, P. J. (1999). Public concerns over transgenic crops. Genome Res. 9, 1159–1162.

Dinkins, R. D., Reddy, M. S. S., Meurer, C. A., Yan, B., Trick, H., Thibaud-Nissen, F., Finer, J. J., Parrott, W. A., and Collins, G. B. (2001). Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein. In Vitro Cell. Dev. Biol. Plant 37, 742–747.

Doreste, V., Ramos, P. L., Enriquez, G. A., Rodriguez, R., Peral, R., and Pujol, M. (2002). Transgenic potato plants expressing the potato virus X (PVX) coat protein gene developed resistance to the viral infection. Phytoparasitica 30, 177–185.

Dowd, C., and Bekes, F. (2002). Large-scale expression and purification of high-molecular weight glutenin subunits. Protein Expr. Purif. 25, 97–104.

Esen, A., and Stetler, D. A. (1992). Immunocytochemical localization of delta-zein in the protein bodies of maize endosperm cells. Am. J. Bot. 79, 243–248.

Galili, G. (1989). Heterologous expression of a wheat high molecular-weight glutenin gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 86, 7756–7760.

Geli, M. I., Torrent, M., and Ludevid, D. (1994). Two structural domains mediate two sequential events in gamma-zein targeting-protein endoplasmic-reticulum retention and protein body formation. Plant Cell 6, 1911–1922.

Glover, D. V., and Mertz, E. T. (1987). Corn. In ‘‘Nutritional Quality of Cereal Grains: Genetic and Agronomic Improvement’’ (R. A. Olson and K. T. Frey, eds.), pp. 183–336. ASA-CSSA-SSSA, Madison, WI.

Gulina, I. V., Shulga, O. A., Mironov, M. V., Revenkova, E. V., Kraev, A. S., Pozmogova, G. E., Yakovleva, G. Y., and Skryabin, K. G. (1994). Expression of a modified gene for the delta-endotoxin of Bacillus thuringiensis var. tenebrionis in transgenic potato plants. Mol. Biol. 28, 748–753.

Habben, J. E., and Larkins, B. A. (1995). Improving protein quality in seeds. In ‘‘Seed Development and Germination’’ (J. Kijel and G. Galili, eds.), pp. 791–810. Marcel Dekker, Inc., New York, Basel, Hong Kong.

Hagan, N. D., Upadhyaya, N., Tabe, L. M., and Higgins, T. J. V. (2003). The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. Plant J. 34, 1–11.

Hamaker, B. R., and Larkins, B. A. (2000). Maize food and feed: A current perspective and consideration of future possibilities. In ‘‘Transgenic Plants and Crops’’ (G. G. Khachatourians, A. McHughen, R. Scorza, W. K. Nip, and Y. H. Hui, eds.), pp. 637–654. Marcel Dekker, Inc., New York and Basel.

Hausler, R. E., Hirsch, H. J., Kreuzaler, F., and Peterhansel, C. (2002). Overexpression of C-4-cycle enzymes in transgenic C-3 plants: A biotechnological approach to improve C-3-photosynthesis. J. Exp. Bot. 53, 591–607.

Herkelman, K. L., Cromwell, G. L., Cantor, A. H., Stahly, T. S., and Pfeiffer, T. W. (1993). Effects of heattreatment on the nutritional-value of conventional and low trypsin-inhibitor soybeans for chicks. Poult. Sci. 72, 1359–1369.

Herman, E. M., and Larkins, B. A. (1999). Protein storage bodies and vacuoles. Plant Cell 11, 601–613.

Herman, E. M., Helm, R. M., Jung, R., and Kinney, A. J. (2003). Genetic modification removes an immunodominant allergen from soybean. Plant Physiol. 132, 36–43.

Higgins, T. J. V., Chandler, P. M., Randall, P. J., Spencer, D., Beach, L. R., Blagrove, R. J., Kortt, A. A., and Inglis, A. S. (1986). Gene structure, protein-structure, and regulation of the synthesis of a sulfurrich protein in pea-seeds. J. Biol. Chem. 261, 1124–1130.

Hinchliffe, D. J., and Kemp, J. D. (2002). Beta-zein protein bodies sequester and protect the 18-kDa delta-zein protein from degradation. Plant Sci. 163, 741–752.

Jaynes, J. M., Yang, M. S., Espinoza, N., and Dodds, J. H. (1986). Plant protein improvement by genetic engineering - use of synthetic genes. Trends Biotechnol. 4, 314–320.

Johnson, L. A., Hardy, C. L., Baumel, C. P., Yu, T. H., and Sell, J. L. (2001). Identifying valuable corn quality traits for livestock feed. Cereal Foods World 46, 472–481.

Kalinski, A. J., Melroy, D. L., Dwivedi, R. S., and Herman, E. M. (1992). A soybean vacuolar protein (P34) related to thiol proteases is synthesized as a glycoprotein precursor during seed maturation. J. Biol. Chem. 267, 12068–12076.

Katsube, T., Kurisaka, N., Ogawa, M., Maruyama, N., Ohtsuka, R., Utsumi, S., and Takaiwa, F. (1999). Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiol. 120, 1063–1073.

Kaufman, R. J. (1999). Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233.

Keeler, S. J., Maloney, C. L., Webber, P. Y., Patterson, C., Hirata, L. T., Falco, S. C., and Rice, J. A. (1997). Expression of de novo high-lysine alpha-helical coiled-coil proteins may significantly increase the accumulated levels of lysine in mature seeds of transgenic tobacco plants. Plant Mol. Biol. 34, 15–29.

Kermode, A. R., and Bewley, J. D. (1999). Synthesis, processing and deposition of seed proteins: The pathway of protein synthesis and deposition in the cell. In ‘‘Seed Proteins’’ (P. Shewry and R. Casey, eds.), pp. 807–842. Kluwer Academic Publishers, Dordrecht, Boston and London.

Khan, M. R. I., Ceriotti, A., Tabe, L., Aryan, A., Mcnabb, W., Moore, A., Craig, S., Spencer, D., and Higgins, T. J. V. (1996). Accumulation of a sulphur-rich seed albumin from sunflower in the leaves of transgenic subterranean clover (Trifolium subterraneum L.). Transgenic Res. 5, 179–185.

Kim, C. S., Kamiya, S., Sato, T., Utsumi, S., and Kito, M. (1990). Improvement of nutritional-value and functional-properties of soybean glycinin by protein engineering. Protein Eng. 3, 725–731.

Kim, C. S., Woo, Y. M., Clore, A. M., Burnett, R. J., Carneiro, N. P., and Larkins, B. A. (2002). Zein protein interactions, rather than the asymmetric distribution of zein mRNAs on endoplasmic reticulum membranes, influence protein body formation in maize endosperm. Plant Cell 14, 655–672.

Kinney, A. J., Jung, R., and Herman, E. M. (2001). Cosuppression of the alpha subunits of betaconglycinin in transgenic soybean seeds induces the formation of endoplasmic reticulum-derived protein bodies. Plant Cell 13, 1165–1178.

Kito, M., Moriyama, T., Kimura, Y., and Kambara, H. (1993). Changes in plasma-lipid levels in young healthy-volunteers by adding an extruder-cooked soy protein to conventional meals. Biosci. Biotechnol. Biochem. 57, 354–355.

Kohnomurase, J., Murase, M., Ichikawa, H., and Imamura, J. (1995). Improvement in the quality of seed storage protein by transformation of Brassica napus with an antisense gene for cruciferin. Theor. Appl. Genet. 91, 627–631.

Kortt, A. A., Caldwell, J. B., Lilley, G. G., and Higgins, T. J. V. (1991). Amino-acid and cDNA sequences of a methionine-rich 2S protein from sunflower seed (Helianthus-annuus L.). Eur. J. Biochem. 195, 329–334.

Kramer, M. G., and Redenbaugh, K. (1994). Commercialization of a tomato with an antisense polygalacturonase gene: The Flavr Savr (Tm) tomato story. Euphytica 79, 293–297.

Kuiper, H. A., Kleter, G. A., Noteborn, H., and Kok, E. J. (2001). Assessment of the food safety issues related to genetically modified foods. Plant J. 27, 503–528.

Lai, J. S., and Messing, J. (2002). Increasing maize seed methionine by mRNA stability. Plant J. 30, 395–402.

Lawrence, M. C., Izard, T., Beuchat, M., Blagrove, R. J., and Colman, P. M. (1994). Structure of phaseolin at 2-center-dot-2 angstromresolution. Implications for a common vicilin/legumin structure and the genetic-engineering of seed storage proteins. J. Mol. Biol. 238, 748–776.

Leckband, G., Frauen, M., and Friedt, W. (2002). NAPUS 2000. Rapeseed (Brassica napus) breeding for improved human nutrition. Food Res. Int. 35, 273–278.

Lee, H., and Garlich, J. D. (1992). Effect of overcooked soybean-meal on chicken performance and amino-acid availability. Poult. Sci. 71, 499–508.

Lending, C. R., and Larkins, B. A. (1989). Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1, 1011–1023.

Li, L., Liu, S. M., Hu, Y. L., Zhao, W. P., and Lin, Z. P. (2001). Increase of sulphur-containing amino acids in transgenic potato with 10 kDa zein gene from maize. Chin. Sci. Bull. 46, 482–484.

Liu, C. Y., Shepherd, K. W., and Rathjen, A. J. (1996). Improvement of durum wheat pasta-making and bread-making qualities. Cereal Chem. 73, 155–166.

Lusk, J. L., and Sullivan, P. (2002). Consumer acceptance of genetically modified foods. Food Technol. 56, 32–37.

Maleki, S. J., and Hurlburt, B. K. (2002). Food allergy: Recent advances in food allergy research. ACS Symp. Ser. 829, 192–204.

Matsuda, T., Sugiyama, M., Nakamura, R., and Torii, S. (1988). Purification and properties of an allergenic protein in rice grain. Agric. Biol. Chem. 52, 1465–1470.

Matsuda, T., Nomura, R., Sugiyama, M., and Nakamura, R. (1991). Immunochemical studies on rice allergenic proteins. Agric. Biol. Chem. 55, 509–513.

Mcnabb, W. C., Spencer, D., Higgins, T. J., and Barry, T. N. (1994). In vitro rates of rumen proteolysis of ribulose-1,5- bisphosphate carboxylase (rubisco) from lucerne leaves, and of ovalbumin, vicilin and sunflower albumin-8 storage proteins. J. Sci. Food Agric. 64, 53–61.

Mertz, E. T., Nelson, O. E., and Bates, L. S. (1964). Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145, 279–280.

Molvig, L., Tabe, L. M., Eggum, B. O., Moore, A. E., Craig, S., Spencer, D., and Higgins, T. J. V. (1997). Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc. Natl. Acad. Sci. USA 94, 8393–8398.

Moneret-Vautrin, D. A. (2002). The allergic risk of transgenic foods: Strategy for prevention. Bull. Acad. Natl. Med. 186, 1391–1400.

Munck, L. (1992). The case of high-lysine barley breeding. In ‘‘Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology’’ (P. Shewry, ed.), pp. 573–601. CAB International, Wallingford, UK.

Nair, R. B., Joy, R. W., Kurylo, E., Shi, X. H., Schnaider, J., Datla, R. S. S., Keller, W. A., and Selvaraj, G. (2000). Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds. Plant Physiol. 123, 1623–1634.

Nelson, O. E. (2001). Maize, the long trail to QPM. In ‘‘Encyclopedia of Genetics’’ (E. C. R. Reeve, ed.), pp. 657–660. Fitzroy Dearboin, London and Chicago.

Nordlee, J. A., Taylor, S. L., Townsend, J. A., Thomas, L. A., and Bush, R. K. (1996). Identification of a Brazil-nut allergen in transgenic soybeans. N. Engl. J. Med. 334, 688–692.

Ogawa, T., Samoto, M., and Takahashi, K. (2000). Soybean allergens and hypoallergenic soybean products. J. Nutr. Sci. Vitaminol. 46, 271–279.

Orf, J. H., and Hymowitz, T. (1979). Inheritance of the absence of the kunitz trypsin-inhibitor in seed protein of soybeans. Crop Sci. 19, 107–109.

Oria, M. P., Hamaker, B. R., Axtell, J. D., and Huang, C. P. (2000). A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proc. Natl. Acad. Sci. USA 97, 5065–5070.

Orthoefer, F. T. (1987). Corn starch modification and uses. In ‘‘Corn: Chemistry and Technology’’ (S. A. Watson and P. E. Ramstad, eds.), pp. 479–500. American Association of Cereal Chemists, Inc., St. Paul, MN.

Osborne, T. B. (1924). ‘‘The Vegetable Proteins,’’ 2nd Edn., p. 154. Longmans, Green and Co., London.

Payne, P. I. (1987). Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu. Rev. Plant Physiol. 38, 141–153.

Pickering, F. S., and Reis, P. J. (1993). Effects of abomasal supplements of methionine on wool growth of grazing sheep. Aust. J. Exp. Agric. 33, 7–12.

Popineau, Y., Deshayes, G., Lefebvre, J., Fido, R., Tatham, A. S., and Shewry, P. R. (2001). Prolamin aggregation, gluten viscoelasticity, and mixing properties of transgenic wheat lines expressing 1Ax and 1Dx high molecular weight glutenin subunit transgenes. J. Agric. Food Chem. 49, 395–401.

Prasanna, B. M., Vasal, S. K., Kassahun, B., and Singh, N. N. (2001). Quality Protein Maize. Curr. Sci. 81, 1308–1319.

Raina, A., and Datta, A. (1992). Molecular-cloning of a gene encoding a seed-specific protein with nutritionally balanced amino-acid-composition from Amaranthus. Proc. Natl. Acad. Sci. USA 89, 11774–11778.

Saalbach, I., Pickardt, T., Waddell, D. R., Hillmer, S., Schieder, O., and Muntz, K. (1995). The sulfur-rich Brazil nut 2s albumin is specifically formed in transgenic seeds of the grain legume Vicia narbonensis. Euphytica 85, 181–192.

Saio, K., Kamiya, M., and Watanabe, T. (1969). Food processing characteristics of soybean-11S and soybean-7S proteins 1. Effect of difference of protein components among soybean varieties on formation of tofu-gel. Agr. Biol. Chem. 33, 1301–1311.

Sangtong, V., Moran, D. L., Chikwamba, R., Wang, K., Woodman-Clikeman, W., Long, M. J., Lee, M., and Scott, M. P. (2002). Expression and inheritance of the wheat Glu-1DX5 gene in transgenic maize. Theor. Appl. Genet. 105, 937–945.

Schickler, H., Benner, M. S., and Messing, J. (1993). Repression of the high-methionine zein gene in the maize inbred line Mo17. Plant J. 3, 221–229.

Scrimshaw, N. S. (2003). Historical concepts of interactions, synergism and antagonism between nutrition and infection. J. Nutr. 133, 316–321.

Sharma, S. B., Hancock, K. R., Ealing, P. M., and White, D. W. R. (1998). Expression of a sulfur-rich maize seed storage protein, delta- zein, in white clover (Trifolium repens) to improve forage quality. Mol. Breed. 4, 435–448.

Shewry, P. R., and Casey, R. (1999b). Seed proteins. In ‘‘Seed Proteins’’ (P. Shewry and R. Casey, eds.), pp. 1–10. Kluwer Academic Publishers, Dordrecht, London, Boston.

Shewry, P. R., and Halford, N. G. (2002). Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 53, 947–958.

Shewry, P., and Pandya, M. (1999). The 2S albumin storage proteins. In ‘‘Seed Proteins’’ (P. Shewry and R. Casey, eds.), pp. 563–596. Kluwer Academic Publishers, Dordrecht, Boston and London.

Shewry, P. R., and Tatham, A. S. (1997). Disulphide bonds in wheat gluten proteins. J. Cereal Sci. 25, 207–227.

Shewry, P. R., and Tatham, A. S. (1999). The characteristics, structures and evolutionary relationships of prolamins. In ‘‘Seed Proteins’’ (P. R. Shewry and R. Casey, eds.), pp. 11–33. Kluwer Academic Publishers, Dordrecht, London, Boston.

Shewry, P. R., Franklin, J., Parmar, S., Smith, S. J., and Miflin, B. J. (1983). The effects of sulfur starvation on the amino acid and protein compositions of barley grain. J. Cereal Sci. 1, 21–31.

Shewry, P. R., Halford, N. G., Tatham, A. S., Popineau, Y., Lafiandra, D., and Belton, P. S. (2003a). The high molecular weight glutenin subunits of wheat and their role in determining wheat processing properties. Adv. Food Nutr. Res. 45, 219–302.

Shewry, P. R., Gilbert, S. M., Savage, A. W. J., Tatham, A. S., Wan, Y. F., Belton, P. S., Wellner, N., D’ovidio, R., Bekes, F., and Halford, N. G. (2003b). Sequence and properties ofHMWsubunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties. Theor. Appl. Genet. 106, 744–750.

Shimoni, Y., Blechl, A. E., Anderson, O. D., and Galili, G. (1997). A recombinant protein of two high molecular weight glutenins alters gluten polymer formation in transgenic wheat. J. Biol. Chem. 272, 15488–15495.

Shotwell, M. A., and Larkins, B. A. (1989). The biochemistry and molecular biology of seed storage proteins. In ‘‘The Biochemistry of Plants; A Comprehensive Treatise’’ (A. Marcus, P. K. Stumpf, and E. E. Conn, eds.), pp. 297–354. Academic Press, New York.

Sindhu, A. S., Zheng, Z. W., and Murai, N. (1997). The pea seed storage protein legumin was synthesized, processed, and accumulated stably in transgenic rice endosperm. Plant Sci. Miscellaneous, 189–196.

Sodek, L., and Wilson, C. M. (1970). Incorporation of leucine-C-14 and lysine-C-14 into protein in developing endosperm of normal and opaque-2 corn. Arch. Biochem. Biophys. 140, 29–36.

Streit, L. G., Beach, L. R., Register, J. C., Jung, R., and Fehr, W. R. (2001). Association of the Brazil nut protein gene and Kunitz trypsin inhibitor alleles with soybean protease inhibitor activity and agronomic traits. Crop Sci. 41, 1757–1760.

Swarup, S., Timmermans, M. C. P., Chaudhuri, S., and Messing, J. (1995). Determinants of the highmethionine trait in wild and exotic germplasm may have escaped selection during early cultivation of maize. Plant J. 8, 359–368.

Tabe, L. M., and Droux, M. (2002). Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol. 128, 1137–1148.

Tabe, L., and Higgins, T. J. V. (1998). Engineering plant protein composition for improved nutrition. Trends Plant Sci. 3, 282–286.

Tabe, L., Hagan, N., and Higgins, T. J. V. (2002). Plasticity of seed protein composition in response to nitrogen and sulfur availability. Curr. Opin. Plant Biol. 5, 212–217.

Tada, Y., Nakase, M., Adachi, T., Nakamura, R., Shimada, H., Takahashi, M., Fujimura, T., and Matsuda, T. (1996). Reduction of 14–16 kDa allergenic proteins in transgenic rice plants by antisense gene. FEBS Lett. 391, 341–345.

Tada, Y., Akagi, H., Fujimura, T., and Matsuda, T. (2003). Effect of an antisense sequence on rice allergen genes comprising a multigene family. Breed. Sci. 53, 61–67.

Taubes, G. (2001). The soft science of dietary fat. Science 291, 2536–2545.

Torrent, M., Geli, M. I., Ruizavila, L., Canals, J. M., Puigdomenech, P., and Ludevid, D. (1994). Role of structural domains for maize gamma-zein retention in xenopus-oocytes. Planta 192, 512–518.

Torrent, M., Alvarez, I., Geli, M. I., Dalcol, I., and Ludevid, D. (1997). Lysine-rich modified gamma-zeins accumulate in protein bodies of transiently transformedmaize endosperms. PlantMol. Biol. 34, 139–149.

Tu, H. M., Godfrey, L. W., and Sun, S. S. M. (1998). Expression of the Brazil nut methionine-rich protein and mutants with increased methionine in transgenic potato. Plant Mol. Biol. 37, 829–838.

Urisu, A., Yamada, K., Masuda, S., Komada, H., Wada, E., Kondo, Y., Horiba, F., Tsuruta, M., Yasaki, T., Yamada, M., Torii, S., and Nakamura, R. (1991). 16-kilodalton rice protein is one of the major allergens in rice grain extract and responsible for cross-allergenicity between cereal-grains in the Poaceae family. Int. Arch. Allergy Appl. Immunol. 96, 244–252.

Utsumi, S., Kitagawa, S., Katsube, T., Kang, I. J., Gidamis, A. B., Takaiwa, F., and Kito, M. (1993). Synthesis, processing and accumulation of modified glycinins of soybean in the seeds, leaves and stems of transgenic tobacco. Plant Sci. 92, 191–202.

Utsumi, S., Kitagawa, S., Katsube, T., Higasa, T., Kito, M., Takaiwa, F., and Ishige, T. (1994). Expression and accumulation of normal and modified soybean glycinins in potato-tubers. Plant Sci. 102, 181–188.

Vasil, I. K., Bean, S., Zhao, J. M., Mccluskey, P., Lookhart, G., Zhao, H. P., Altpeter, F., and Vasil, V. (2001). Evaluation of baking properties and gluten protein composition of field grown transgenic wheat lines expressing high molecular weight glutenin gene 1Ax1. J. Plant Physiol. 158, 521–528.

Velasco, L., andMollers, C. (1998).Nondestructive assessment of sinapic acid esters in brassica species: II. Evaluation of germplasm and identification of phenotypes with reduced levels. Crop Sci. 38, 1650–1654.

Wallace, J. C., Galili, G., Kawate, E. E., Cuellar, R. E., Shotwell, M. A., and Larkins, B. A. (1988). Aggregation of lysine-containing zeins in protein bodies in Xenopus oocytes. Science 240, 662–664.

Wang, X. L., and Larkins, B. A. (2001). Genetic analysis of amino acid accumulation in opaque-2 maize endosperm. Plant Physiol. 125, 1766–1777.

Watanabe, M. (1993). Hypoallergenic rice as a physiologically functional food. Trends Food Sci. Technol. 4, 125–128.

Watanabe, Y., Barbashov, S. F., Komatsu, S., Hemmings, A. M., Miyagi, M., Tsunasawa, S., and Hirano, H. (1994). A peptide that stimulates phosphorylation of the plant insulin-binding protein: Isolation, primary structure and cDNA cloning. Eur. J. Biochem. 224, 167–172.

Waterhouse, P. M., Graham, H. W., and Wang, M. B. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 95, 13959–13964.

White, C. L., Tabe, L. M., Dove, H., Hamblin, J., Young, P., Phillips, N., Taylor, R., Gulati, S., Ashes, J., and Higgins, T. J. V. (2001). Increased efficiency of wool growth and live weight gain in Merino sheep fed transgenic lupin seed containing sunflower albumin. J. Sci. Food Agric. 81, 147–154.

Woo, Y. M., Hu, D. W. N., Larkins, B. A., and Jung, R. (2001). Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. Plant Cell 13, 2297–2317.

Yaklich, R. W., Helm, R. M., Cockrell, G., and Herman, E. M. (1999). Analysis of the distribution of the major soybean seed allergens in a core collection of Glycine max accessions. Crop Sci. 39, 1444–1447.

Yang, M. S., Espinoza, N. O., Nagpala, P. G., Dodds, J. H., White, F. F., Schnorr, K. L., and Jaynes, J. M. (1989). Expression of a synthetic gene for improved protein-quality in transformed potato plants. Plant Sci. 64, 99–111.

Youle, R. J., and Huang, A. H. C. (1981). Occurrence of low-molecular weight and high cysteine containing albumin storage proteins in oilseeds of diverse species. Am. J. Bot. 68, 44–48.



 
     
 
 
     



     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer