Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: Molecular Biology of Plant Pathways » Metabolic Engineering of Plant Allyl/Propenyl Phenol and Lignin
  Pathways
 
 
Please share with your friends:  
 
 

References

 
     
 
Alexander, R., Jefferson, A., and Lester, P. D. (1981). Cationic oligomerization and polymerization of some propenylbenzene derivatives. J. Polymer Sci.: Polym. Chem. Ed. 19, 695–706.

Anterola, A. M., and Lewis, N. G. (2002). Trends in lignin modification: A comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry61, 221–294.

Anterola, A. M., Van Rensburg, H., Van Heerden, P. S., Davin, L. B., and Lewis, N. G. (1999). Multi-site modulation of flux during monolignol formation in loblolly pine (Pinus taeda). Biochem. Biophys. Res. Commun. 261, 652–657.

Anterola, A. M., Jeon, J.-H., Davin, L. B., and Lewis, N. G. (2002). Transcriptional control of monolignol biosynthesis in Pinus taeda: Factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism. J. Biol. Chem. 277, 18272–18280.

Arteaga, S., Andrade-Cetto, A., and Cárdenas, R. (2005). Larrea tridentata (creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. J. Ethnopharmacol. 98, 231–239.

Atanassova, R., Favet, N., Martz, F., Chabbert, B., Tollier, M.-T., Monties, B., Fritig, B., and Legrand, M. (1995). Altered lignin composition in trangenic tobacco expressing O-methyltranferase sequences in sense and antisense orientation. Plant J. 8, 465–477.

Badger, D. A., Smith, R. L., Bao, J., Kuester, R. K., and Sipes, I. G. (2002). Disposition and metabolism of isoeugenol in the male Fischer 344 rat. Food Chem. Toxicol. 40, 1757–1765.

Baedeker, M., and Schulz, G. E. (2002). Autocatalytic peptide cyclization during chain folding of histidine ammonia-lyase. Structure 10, 61–67.

Bauer, K., Garbe, D., and Surburg, H. (2001). Natural raw materials in the flavor and fragrance industry. In ‘‘Common Fragrance and Flavor Materials: Preparation and Uses’’ (K. Bauer, D. Garbe, and H. Surburg, eds.), pp. 167–226. Wiley-VCH, Weinheim, Germany.

BBC/PRI/WGBH The World (2007). http://www.theworld.org/?q=node/6595.

Berger, R. G. (1991). Genetic engineering. Part III: Food Flavors. In ‘‘Encyclopedia of Food Science and Technology’’ (Y. H. Hui, ed.) Vol. 2 pp. 1313–1320. Wiley-Interscience, New York.

Bywater, S. (1963). Aromatic compounds other than styrene. In ‘‘The Chemistry of Cationic Polymerization’’ (P. H. Plesch, ed.) pp. 305–347. Pergamon Press, New York.

Calabrese, J. C., Jordan, D. B., Boodhoo, A., Sariaslani, S., and Vannelli, T. (2004). Crystal structure of phenylalanine ammonia lyase: Multiple helix dipoles implicated in catalysis. Biochemistry 43, 11403–11416.

Camm, E. L., and Towers, G. H. N. (1973). Phenylalanine ammonia lyase. Phytochemistry 12, 961–973.

Canonica, L., Manitto, P., Monti, D., and Sanchez, A. M. (1971). Biosynthesis of allylphenols in Ocymum basilicum L. J. Chem. Soc., Chem. Commun. 1108–1109.

Cerrai, P., Andruzzi, F., and Giusti, P. (1969a). Polimerizzazione del β-metil-p-metossi-stirene (anetolo). I. Cinetica della polimerizzazione in presenza di BF3.Et2O. Chim. Ind. 51, 681–686.

Cerrai, P., Andruzzi, F., and Giusti, P. (1969b). Polimerizzazione del β-metil-p-metossi-stirene (anetolo). II. Effetto di un campo elettrico sulla polimerizzazione in presenza di BF3.Et2O. Chim. Ind. 51, 687–692.

Chang, C.-C., Heller, J. D., Kuo, J., and Huang, R. C. C. (2004). Tetra-O-methyl nordihydroguaiaretic acid induces growth arrest and cellular apoptosis by inhibiting Cdc2 and survivin expression. Proc. Natl. Acad. Sci. USA 101, 13239–13244.

Chen, F., Yasuda, S., and Fukushima, K. (1999a). Evidence for a novel biosynthetic pathway that regulates the ratio of syringyl to guaiacyl residues in lignin in the differentiating xylem of Magnolia kobus DC. Planta 207, 597–603.

Chen, F., Yasuda, S., and Fukushima, K. (1999b). Structural conversion of the lignin subunit at the cinnamyl alcohol stage in Eucalyptus camaldulensis. J. Wood Sci. 45, 487–491.

Chen, Y.-R., Jacobson, B., Sarkanen, S., and Wang, Y. (2001). The preliminary characterization of lignin depolymerase. Proc. 11th Internat. Symp. Wood Pulp. Chem. 1, 313–316.

Cho, M.-H., Moinuddin, S. G. A., Helms, G. L., Hishiyama, S., Eichinger, D., Davin, L. B., and Lewis, N. G. (2003). (+)-Larreatricin hydroxylase, an enantio-specific polyphenol oxidase from the creosote bush (Larrea tridentata). Proc. Natl. Acad. Sci. USA 100, 10641–10646.

Cho, M.-H., Corea, O. R. A., Yang, H., Bedgar, D. L., Laskar, D. D., Anterola, A. M., Moog- Anterola, F. A., Hood, R. L., Kohalmi, S. E., Bernards, M. A., Kang, C., Davin, L. B., and Lewis, N. G. (2007). Phenylalanine biosynthesis in Arabidopsis thaliana: Identification and characterization of arogenate dehydratases. J. Biol. Chem. doi:10.1074/jbc. M702662200.

Cihaner, A., Testereci, H. N., and Önal, A. M. (2001). Electrochemical polymerization of 4-allylanisole. Eur. Polym. J. 37, 1747–1752.

Ciszewski, A., and Milczarek, G. (1998). A new Nafion-free bipolymeric sensor for selective and sensitive detection of nitric oxide. Electroanalysis 10, 791–793.

Ciszewski, A., and Milczarek, G. (1999). Polyeugenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic acid. Anal. Chem. 71, 1055–1061.

Ciszewski, A., and Milczarek, G. (2001). Preparation and general properties of chemically modified electrodes based on electrosynthesized thin polymeric films derived from eugenol. Electroanalysis13, 860–867.

Ciszewski, A., and Milczarek, G. (2003). Electrochemical detection of nitric oxide using polymer modified electrodes. Talanta 61, 11–26.

Cochrane, F. C., Davin, L. B., and Lewis, N. G. (2004). The Arabidopsis phenylalanine ammonia-lyase multigene family. Kinetic characterization of the four PAL isoforms. Phytochemistry 65, 1557–1564.

Committee on Biobased Industrial Products; Board on Biology; Commission on Life Sciences; National Research Council (2000). ‘‘Biobased Industrial Products. Priorities for Research and Commercialization.’’ Washington, DC: National Academy Press.

Costa, M. A., Bedgar, D. L., Moinuddin, S. G. A., Kim, K.-W., Cardenas, C. L., Cochrane, F. C., Shockey, J. M., Helms, G. L., Amakura, Y., Takahashi, H., Milhollan, J. K., Davin, L. B., Browse, J. A., and Lewis, N. G. (2005). Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: Syringyl lignin and sinapate/sinapyl alcohol derivative formation. Phytochemistry 66, 2072–2091.

Dexter, R., Qualley, A., Kish, C. M., Ma, C. J., Koeduka, T., Nagegowda, D. A., Dudareva, N., Pichersky, E., and Clark, D. (2007). Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant J. 49, 265–275.

Dinkova-Kostova, A. T., Gang, D. R., Davin, L. B., Bedgar, D. L., Chu, A., and Lewis, N. G. (1996). (+)- Pinoresinol-(+)-lariciresinol reductase from Forsythia intermedia: Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. J. Biol. Chem. 271, 29473–29482.

Evliya, H., and Olcay, A. (1974). Oxidative polymerisation of isoeugenol and mild oxidation of synthetic polymers with alkaline cupric hydroxide. Holzforschung 28, 130–135.

Felsenstein, J. (1993). Phylip (Phylogeny Inference Package) version 3.5c. Distributed by the author.

Food and Drug Administration (2006). U.S. Code of Federal Regulations 101.22, 21 http://frwebgate3. access.gpo.gov/cgi-bin/waisgate.cgi?WAISdocID=4697572256+1+1+0&WAISaction=retrieve.

Ford, J. D., Huang, K.-S., Wang, H.-B., Davin, L. B., and Lewis, N. G. (2001). Biosynthetic pathway to the cancer chemopreventive secoisolariciresinol diglucoside-hydroxymethyl glutaryl ester-linked lignan oligomers in flax (Linum usitatissimum) seed. J. Nat. Prod. 64, 1388–1397.

Fujita, M., Gang, D. R., Davin, L. B., and Lewis, N. G. (1999). Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J. Biol. Chem. 274, 618–627.

Gang, D. R., Kasahara, H., Xia, Z.-Q., Vander Mijnsbrugge, K., Bauw, G., Boerjan, W., Van Montagu, M., Davin, L. B., and Lewis, N. G. (1999). Evolution of plant defense mechanisms: Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J. Biol. Chem. 274, 7516–7527.

Gardner, J. A. F., Barton, G. M., and Maclean, H. (1959). The polyoxyphenols of western red cedar (Thuja plicata Donn). I. Isolation and preliminary characterization of plicatic acid. Can. J. Chem. 37, 1703–1709.

Gardner, J. A. F., Macdonald, B. F., and Maclean, H. (1960). The polyoxyphenols of western red cedar (Thuja plicata Donn). II. Degradation studies on plicatic acid, a possible lignan acid. Can. J. Chem. 38, 2387–2394.

Gardner, J. A. F., Swan, E. P., Sutherland, S. A., and Maclean, H. (1966). Polyoxyphenols of western red cedar (Thuja plicata Donn). III. Structure of plicatic acid. Can. J. Chem. 44, 52–58.

George Uhe Company (2006). Flavor and fragrance ingredients market reports newsletter (April), 2006 http://www.uhe.com/mktreport-04_06.htm.

Glenn, J. K., Morgan, M. A., Mayfield, M. B., Kuwahara, M., and Gold, M. H. (1983). An extracellular hydrogen peroxide requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 114, 1077–1083.

Grand, C. (1984). Ferulic acid 5-hydroxylase: A new cytochrome p-450-dependent enzyme from higher plant microsomes involved in lignin synthesis. FEBS Lett. 169, 7–11.

Haneke, K. E. (2002). Turpentine (turpentine oil, wood turpentine, sulfate turpentine, sulfite turpentine) [8006–64–2]. Review of toxicological literature 2002 http://ntp-server.niehs.nih.gov/ntp/htdocs/ Chem_Background/ExSumPdf/turpentine.pdf.

Harrison, B., and Gang, D. R. (2006). Characterization of coniferyl acetate acetyl transferase from sweet basil (Ocimum basilicum). The 19th Rocky Mountain Regional Meeting. Tucson, AZ.

Heller, W., and Kühnl, T. (1985). Elicitor induction of a microsomal 5-O-(4-coumaroyl)shikimate 30-hydroxylase in parsley cell suspension cultures. Arch. Biochem. Biophys. 241, 453–460.

Henniges, O., and Zeddies, J. (2006). Bioenergy in Europe: Experiences and prospects. In ‘‘Bioenergy and Agriculture. Promises and Challenges’’ (H. Hazell and R. K. Pachauri, eds.), Vol. 14. International Food Policy Research Institute. http://dx.doi.org/10.2499/2020focus14.

Hocking, M. B. (1997). Vanillin: Synthetic flavoring from spent sulfite liquor. J. Chem. Educ. 74, 1055–1059.

Hoffmann, L., Maury, S., Martz, F., Geoffroy, P., and Legrand, M. (2003). Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J. Biol. Chem. 278, 95–103.

Hoffmann, L., Besseau, S., Geoffroy, P., Ritzenthaler, C., Meyer, D., Lapierre, C., Pollet, B., and Legrand, M. (2004). Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell. 16, 1446–1465.

Humphreys, J. M., Hemm, M. R., and Chapple, C. (1999). New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc. Natl. Acad. Sci. USA 96, 10045–10050.

Jang, E., Mcinnis, D., Vargas, R., and Mau, R. (2003). Area-wide integrated pest management (Ipm) of fruit flies in Hawaiian fruits and vegetables 2003 http://www.ars.usda.gov/research/publications/ publications.htm?SEQ_NO_115=167070.

Jiao, Y., Davin, L. B., and Lewis, N. G. (1998). Furanofuran lignan metabolism as a function of seed maturation in Sesamum indicum: Methylenedioxy bridge formation. Phytochemistry 49, 387–394.

Jourdes, M., Cardenas, C. L., Laskar, D. D., Moinuddin, S. G. A., Davin, L. B., and Lewis, N. G. (2007). Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-phydroxycinnamaldehydes: Evolutionary implications. Phytochemistry 68, 1932–1956.

Jung, E., Zamir, L. O., and Jensen, R. A. (1986). Chloroplasts of higher plants synthesize L-phenylalanine via L-arogenate. Proc. Natl. Acad. Sci. USA 83, 7231–7235.

Kasahara, H., Davin, L. B., and Lewis, N. G. (2004). Aryl propenal double bond reductase. U. S. Patent No. 6,703,229. Filed March 27, 2001. Issued March 9, 2004, 30 pp.

Kasahara, H., Jiao, Y., Bedgar, D. L., Kim, S.-J., Patten, A. M., Xia, Z.-Q., Davin, L. B., and Lewis, N. G. (2006). Pinus taeda phenylpropenal double-bond reductase: Purification, cDNA cloning, heterologous expression in Escherichia coli, and subcellular localization in P. taeda. Phytochemistry 67, 1765–1780.

Kato, M. J., Chu, A., Davin, L. B., and Lewis, N. G. (1998). Biosynthesis of antioxidant lignans in Sesamum indicum seeds. Phytochemistry 47, 583–591.

Kennedy, J. P. (1964). Cationic isomerization polymerization of β-methylstyrene and allylbenzene. J. Polym. Sci.: Part A 2, 5171–5176.

Kim, M. K., Jeon, J.-H., Fujita, M., Davin, L. B., and Lewis, N. G. (2002). The western red cedar (Thuja plicata) 8–80 DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity. Plant Mol. Biol. 49, 199–214.

Kim, S.-J., Kim, M.-R., Bedgar, D. L., Moinuddin, S. G. A., Cardenas, C. L., Davin, L. B., Kang, C., and Lewis, N. G. (2004). Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 1455–1460.

Kim, K. W., Moinuddin, S. G. A., Davin, L. B., Kang, C., and Lewis, N. G. (2007). Defining the molecular basis of differing enantiospecificities of pinoresinol-lariciresinol reductase and homologues thereof in western red cedar using site-directed mutagenesis. (Submitted).

Kirk, T. K., Tien, M., Kersten, P. J., Mozuch, M. D., and Kalyanaraman, B. (1986). Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol β-aryl ether substructure of lignin. Biochem. J. 236, 279–287.

Klischies, M., Stockigt, J., and Zenk, M. H. (1975). Biosynthesis of the allyphenols eugenol and methyleugenol in Ocymum basilicum L. J. Chem. Soc. Chem. Commun. 879–880.

Koeduka, T., Fridman, E., Gang, D. R., Vassão, D. G., Jackson, B. L., Kish, C. M., Orlova, I., Spassova, S. M., Lewis, N. G., Noel, J. P., Baiga, T. J., Dudareva, N., et al. (2006). Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc. Natl. Acad. Sci. USA 103, 10128–10133.

Koukol, J., and Conn, E. E. (1961). The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J. Biol. Chem. 236, 2692–2698.

Kraus, C., and Spiteller, G. (1997). Comparison of phenolic compounds from galls and shoots of Picea glauca. Phytochemistry 44, 59–67.

Krings, U., and Berger, R. G. (1998). Biotechnological production of flavours and fragrances. Appl. Microbiol. Biotechnol. 49, 1–8.

Laskar, D. D., Jourdes, M., Patten, A. M., Helms, G. L., Davin, L. B., and Lewis, N. G. (2006). The Arabidopsis cinnamoyl CoA reductase irx4 mutant has a delayed but coherent (normal) program of lignification. Plant J. 48, 674–686.

Lauvergeat, V., Lacomme, C., Lacombe, E., Lasserre, E., Roby, D., and Grima-Pettenati, J. (2001). Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57, 1187–1195.

Lesage-Meessen, L., Delattre, M., Haon, M., Thibault, J.-F., Ceccaldi, B. C., Brunerie, P., and Asther, M. (1996). A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J. Biotechnol. 50, 107–113.

Lewis, N. G., and Yamamoto, E. (1990). Lignin: Occurrence, biogenesis and biodegradation. Annu. Rev. Plant Phys. Plant Mol. Biol. 41, 455–496.

Lewis,N. G., Davin, L. B., and Sarkanen, S. (1999). The nature and function of lignins. In ‘‘Comprehensive Natural Products Chemistry’’ (Sir D. H. R. Barton, K. Nakanishi, and O. Meth-Cohn, eds.) , pp. 617–745. Elsevier, Oxford.

Li, L., Cheng, X., Leshkevich, J., Umezawa, T., Harding, S., and Chiang, V. (2001). The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13, 1567–1585.

Longo, M. A., and Sanromán, M. A. (2006). Production of food aroma compounds: Microbial and enzymatic methodologies. Food Technol. Biotechnol. 44, 335–353.

Louie, G. V., Bowman, M. E., Moffitt, M. C., Baiga, T. J., Moore, B. S., and Noel, J. P. (2006). Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases. Chem. Biol. 13, 1327–1338.

Maillefer, E. (1990). Perfuming ingredient, process for its preparation and utilization of said ingredient in perfuming compositions and perfumed products. U.S. Patent No. 4,904,465.

Manitto, P., Monti, D., and Gramatica, P. (1974a). Biosynthesis of phenylpropanoid compounds. Part I. Biosynthesis of eugenol in Ocimum basilicum L. J. Chem. Soc. Perkin Trans. 1727–1731.

Manitto, P., Monti, D., and Gramatica, P. (1974b). Biosynthesis of anethole in Pimpinella anisum L. Tetrahedron Lett. 15, 1567–1568.

Maralhas, A., Monteiro, A., Martins, C., Kranendonk, M., Laires, A., Rueff, J., and Rodrigues, A. S. (2006). Genotoxicity and endoreduplication inducing activity of the food flavouring eugenol. Mutagenesis 21, 199–204.

Meyer, K., Cusumano, J. C., Somerville, C., and Chapple, C. C. S. (1996). Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc. Natl. Acad. Sci. USA 93, 6869–6874.

Min, T., Kasahara, H., Bedgar, D. L., Youn, B., Lawrence, P. K., Gang, D. R., Halls, S. C., Park, H., Hilsenbeck, J. L., Davin, L. B., Lewis, N. G., and Kang, C. (2003). Crystal structures of pinoresinollariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J. Biol. Chem. 278, 50714–50723.

Moinuddin, S. G. A., Hishiyama, S., Cho, M.-H., Davin, L. B., and Lewis, N. G. (2003). Synthesis and chiral HPLC analysis of the dibenzyltetrahydrofuran lignans, larreatricins, 80-epi-larreatricins, 3,30-didemethoxyverrucosins and meso-3,30-didemethoxynectandrin B in the creosote bush (Larrea tridentata): Evidence for regiospecific control of coupling. Org. Biomol. Chem. 1, 2307–2313.

Muzac, I., Want, J., Anzellotti, D., Zhang, H., and Ibrahim, R. K. (2000). Functional expression of an Arabidopsis cDNA clone encoding a flavonol 30-O-methyltransferase and characterization of the gene product. Arch. Biochem. Biophys. 375, 385–388.

Newberne, P., Smith, R. L., Doull, J., Goodman, J. I., Munro, I. C., Portoghese, P. S., Wagner, B. M., Weil, C. S., Woods, L. A., Adams, T. B., Lucas, C. D., and Ford, R. A. (1999). The FEMA GRAS assessment of trans-anethole used as a flavouring substance. Food Chem. Toxicol. 37, 789–811.

Niggeweg, R., Michael, A. J., and Martin, C. (2004). Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat. Biotechnol. 22, 746–754.

Nowicki, A., Zhang, Y., Léger, B., Rolland, J.-P., Bricout, H., Monflier, E., and Roucoux, A. (2006). Supramolecular shuttle and protective agent: A multiple role of methylated cyclodextrins in the chemoselective hydrogenation of benzene derivatives with ruthenium nanoparticles. J. Chem. Soc. Chem. Commun. 296–298.

Pakusch, A.-E., Kneussel, R., and Matern, U. (1989). S-Adenosyl-L-methionine:trans-caffeoyl-coenzyme A 3-O-methyltransferase from elictor-treated parsley cell suspension cultures. Arch. Biochem. Biophys. 271, 488–494.

Patten, A. M., Cardenas, C. L., Cochrane, F. C., Laskar, D. D., Bedgar, D. L., Davin, L. B., and Lewis, N. G. (2005). Reassessment of effects on lignification and vascular development in the irx4 Arabidopsis mutant. Phytochemistry 66, 2092–2107.

Patten, A. M., Jourdes, M., Brown, E. E., Laborie, M.-P., Davin, L. B., and Lewis, N. G. (2007). Reaction tissue formation and stem tensile modulus properties in wild-type and p-coumarate-3-hydroxylase downregulated lines of alfalfa, Medicago sativa (Fabaceae). Am. J. Bot. 94, 912–925.

Peterson, C. L. (1995). Potential production of biodiesel. http://www.uidaho.edu/bioenergy/ BiodieselEd/publication/02.pdf.

Piquemal, J., Lapierre, C., Myton, K., O’Connell, A., Schuch, W., Grima-Pettenati, J., and Boudet, A.-M. (1998). Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 13, 71–83.

Poppe, L., and Rétey, J. (2005). Friedel-Crafts-type mechanism for the enzymatic elimination of ammonia from histidine and phenylalanine. Angew. Chem. Int. Ed. 44, 3668–3688.

Priefert, H., Rabenhorst, J., and Steinb Üchel, A. (2001). Biotechnological production of vanillin. Appl. Microbiol. Biotechnol. 56, 296–314.

Rabenhorst, J., and Hopp, R. (1991). Process for the preparation of vanillin, U. S. Patent No. 5,017,388, May 21, 1991.

Rahim, E. A., Sanda, F., and Masuda, T. (2004). Synthesis and properties of novel eugenol-based polymers. Polym. Bull. 52, 93–100.

Rohde, A.,Morreel, K., Ralph, J., Goeminne, G., Hostyn,V., De Rycke, R.,Kushnir, S., Van Doorsselaere, J., Joseleau, J.-P., Vuylsteke,M., Van Driessche, G., Van Beeumen, J., Messens, E., and Boerjan, W. (2004). Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16, 2749–2771.

Rubery, P. H., and Fosket, D. E. (1969). Changes in phenylalanine ammonia-lyase activity during xylem differentiation in Coleus and soybean. Planta 87, 54–62.

Sarkanen, S., Razal, R. A., Piccariello, T., Yamamoto, E., and Lewis, N. G. (1991). Lignin peroxidase: Toward a clarification of its role in vivo. J. Biol. Chem. 266, 3636–3643.

Schoch, G., Goepfert, S., Morant, M., Hehn, A., Meyer, D., Ullmann, P., and Werck-Reichhart, D. (2001). CYP98A3 from Arabidopsis thaliana is a 30-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J. Biol. Chem. 276, 36566–36574.

Schoemaker, H. E., Mink, D., and Wubbolts, M. G. (2003). Dispelling the myths—Biocatalysis in industrial synthesis. Science 299, 1694–1697.

Schmitt, D., Pakusch, A.-E., and Matern, U. (1991). Molecular cloning, induction, and taxonomic distribution of caffeoyl-CoA 3-O-methyltransferase, an enzyme involved in disease resistance. J. Biol. Chem. 266, 17416–17423.

Schrader, J., Etschmann, M. M. W., Sell, D., Hilmer, J.-M., and Rabenhorst, J. (2004). Applied biocatalysis for the synthesis of natural flavour compounds—Current industrial processes and future prospects. Biotechnol. Lett. 26, 463–472.

Schwede, T. F., Retey, J., and Schulz, G. E. (1999). Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile. Biochemistry 38, 5355–5361.

Secci, M., and Mameli, L. (1956). Sulla polimerizzazione dell’anetolo con BF3. Ann. Chim. 47, 580–585.

Senanayake, U. M., Wills, R. B. H., and Lee, T. H. (1977). Biosynthesis of eugenol and cinnamic aldehyde in Cinnamomum zeylanicum. Phytochemistry 16, 2032–2033.

Shimoni, E., Ravid, U., and Shoham, Y. (2000). Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin. J. Biotechnol. 78, 1–9.

Sibout, R., Eudes, A., Mouille, G., Pollet, B., Lapierre, C., Jouanin, L., and Séguin, A. (2005). CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17, 2059–2076.

Skinner, E. W. (1940). ‘‘The Science of Dental Materials.’’ Philadelphia: W. B. Saunders Company, Philadelphia.

Smith, R. L., Doull, J., Feron, V. J., Goodman, J. I., Munro, I. C., Newberne, P. M., Portoghese, P. S., Waddell, W. J., Wagner, B. M., Adams, T. B., and McGowen, M. M. (2001). GRAS flavoring substances 20. Food Technol. 55, 34–55.

Suzuki, S., Nakatsubo, T., Umezawa, T., and Shimada, M. (2002). First in vitro norlignan formation with Asparagus officinalis enzyme preparation. J. Chem. Soc. Chem. Commun. 1088–1089.

Suzuki, S., Yamamura, M., Shimada, M., and Umezawa, T. (2004). A heartwood norlignan, (E)-hinokiresinol, is formed from 4-coumaryl 4-coumarate by a Cryptomeria japonica enzyme preparation. J. Chem. Soc. Chem. Commun. 2838–2839.

Takahashi, H., Costa, M. A., Davin, L. B., and Lewis, N. G. CCOMT (Manuscript in preparation).

Teoh, K. H., Ford, J. D., Kim, M.-R., Davin, L. B., and Lewis, N. G. (2003). Delineating the metabolic pathway(s) to secoisolariciresinol diglucoside hydroxymethyl glutarate oligomers in flaxseed (Linum usitatissimum). In ‘‘Flaxseed in Human Nutrition’’ (L. U. Thompson and S. C. Cunnane, eds.), 2nd edn., pp. 41–62. AOCS Press, Champaign, IL.

The European Commission (1991). Council Directive 88/388/EEC. http://ec.europa.eu/food/fs/sfp/ addit_flavor/flav09_en.pdf.

The Flavor and Fragrance High Production Volume Consortia (2002). Test plan for anethole (isomer unspecificed) and trans-anethole, 2002. http://www.epa.gov/chemrtk/pubs/summaries/anethole/c14069tp.pdf.

The Flavor and Fragrance High Production Volume Consortia (2005). Test plan for estragole. http:// www.epa.gov/chemrtk/pubs/summaries/estragole/c14022rt.pdf.

Tien, M., and Kirk, T. K. (1983). Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221, 661–663.

Tien, M., and Tu, C.-P. D. (1987). Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326, 520–523.

U.S. Department of Energy’s Genomics (2006). GTL Bioenergy Research Centers White Paper, August .

U.S. Environmental Protection Agency (2006a). Pesticides: Regulating pesticides. Methyl eugenol (ME) http://www.epa.gov/oppbppd1/biopesticides/ingredients/factsheets/factsheet_203900.htm.

U.S. Environmental Protection Agency (2006b). Pesticides: Regulating pesticides. Floral attractants, repellents, and insecticides products. http://www.epa.gov/pesticides/biopesticides/ingredients/ product/prod_florals.htm.

U.S. Environmental Protection Agency (2006c). Pesticides: Biopesticides. Floral attractants, repellents, and insecticides fact sheet. http://www.epa.gov/pesticides/biopesticides/ingredients/factsheets/ factsheet_florals.htm.

U.S. Environmental Protection Agency (2006d). Pesticides: Biopesticides. Plant oils fact sheet. http:// www.epa.gov/oppbppd1/biopesticides/ingredients/factsheets/factsheet_plant-oils.htm.

U.S. Environmental Protection Agency (2006e). Pesticides: Regulating pesticides. 4-Allyl anisole (estragole) (062150) fact sheet. http://www.epa.gov/pesticides/biopesticides/ingredients/ factsheets/factsheet_062150.htm.

Vassão, D. G., Eichinger, D., Kim, S.-J., Davin, L. B., and Lewis, N. G. (2006a). Genes encoding chavicol/eugenol synthase from the creosote bush Larrea tridentata. U. S. Patent Application.

Vassão, D. G., Gang, D. R., Koeduka, T., Jackson, B., Pichersky, E., Davin, L. B., and Lewis, N. G. (2006b). Chavicol formation in sweet basil (Ocimum basilicum): Cleavage of an esterified C9 hydroxyl group with NAD(P)H-dependent reduction. Org. Biomol. Chem. 4, 2733–2744.

Vassão, D. G., Kim, S.-J., Milhollan, J. K., Eichinger, D., Davin, L. B., and Lewis, N. G. (2007). A pinoresinol–lariciresinol reductase homologue from the creosote bush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/ eugenol, but not the propenylphenols p-anol/isoeugenol. Arch. Biochem. Biophys. 465, 209–218.

Watts, K. T., Mijts, B. N., Lee, P. C., Manning, A. J., and Schmidt-Dannert, C. (2006). Discovery of a substrate selectivity switch in tyrosine ammonia-lyase, a member of the aromatic amino acid lyase family. Chem. Biol. 13, 1317–1326.

Weinberg, J. E., Rabinowitz, J. L., Zanger, M., and Gennaro, A. R. (1972). 14C-Eugenol: I. Synthesis, polymerization, and use. J. Dent. Res. 51, 1055–1061.

Ye, Z., Kneusel, R., Matern, U., and Varner, J. (1994). An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 6, 1427–1439.

Yoshimoto, T., Samejima, M., Hanyu, N., and Komai, T. (1990). Manufacture of benzaldehydes from styrenes with dioxygenase from Pseudomonas species. Japan Patent No. JP02200192, 1990.

Youn, B., Camacho, R., Moinuddin, S. G. A., Lee, C., Davin, L. B., Lewis, N. G., and Kang, C. (2006a). Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Org. Biomol. Chem. 4, 1687–1697.

Youn, B., Kim, S.-J., Moinuddin, S. G., Lee, C., Bedgar, D. L., Harper, A. R., Davin, L. B., Lewis, N. G., and Kang, C. (2006b). Mechanistic and structural studies of apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase At5g16970. J. Biol. Chem. 281, 40076–40088.

Zhang, D., Franceschi, V. R., Davin, L. B., and Lewis, N. G. COMT (Manuscript in preparation).





 
     
 
 
     



     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer