Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
Main Menu
Please click the main subject to get the list of sub-categories
Services offered
  Section: Molecular Biology of Plant Pathways » Metabolic Organization in Plants
Please share with your friends:  


Amor, Y., Haigler, C. H., Johnson, S., Wainscott, M., and Delmer, D. P. (1995). A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92, 9353–9357.

ap Rees, T. (1987). Compartmentation of plant metabolism. In ‘‘The Biochemistry of Plants’’ (D. D. Davies, ed.), vol. 12, , pp. 87–115. Academic Press, New York.

Bailey, J. E. (2001). Complex biology with no parameters. Nat. Biotechnol. 19, 503–504.

Baroja-Fernandez, E., Munoz, F. J., Zandueta-Criado, A., Moran-Zorzano, M. T., Viale, A. M., Alonso- Casajus, N., and Pozueta-Romero, J. (2004). Most of ADP-glucose linked to starch biosynthesis occurs outside the chloroplast in source leaves. Proc. Natl. Acad. Sci. USA 101, 13080–13085.

Baroja-Fernandez, E., Munoz, F. J., and Pozueta-Romero, J. (2005). Response to Neuhaus et al.: No need to shift the paradigm on the pathway to transitory starch in leaves. Trends Plant Sci. 10, 156–158.

Bonarius, H. P. J., Schmid, G., and Tramper, J. (1997). Flux analysis of underdetermined metabolic networks: The quest for the missing constraints. Trends Biotechnol. 15, 308–314.

Burrell, M. M., Mooney, P. J., Blundy, M., Carter, D., Wilson, F., Green, J., Blundy, K. S., and ap Rees, T. (1994). Genetic manipulation of 6-phosphofructokinase in potato tubers. Planta 194, 95–101.

Burton, R. A., Johnson, P. E., Beckles, D. M., Fincher, G. B., Jenner, H. L., Naldrett, M. J., and Denyer, K. (2002). Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm. Plant Physiol. 130, 1464–1475.

Cornish-Bowden, A., and Cardenas, M. L. (2002). Metabolic balance sheets. Nature 420, 129–130.
Covert, M. W., and Palsson, B. O. (2002). Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277, 28058–28064.

Covert, M. W., Schilling, C. H., Famili, I., Edwards, J. S., Goryanin, I. I., Selkov, E., and Palsson, B. O. (2001). Metabolic modelling of microbial strains in silico. Trends Biochem. Sci. 26, 179–186.

Croteau, R., Kutchan, T. M., and Lewis, N. G. (2000). Natural products (Secondary metabolites). In ‘‘Biochemistry & Molecular Biology of Plants’’ (B. B. Buchanan, W. Gruissem, and R. L. Jones, eds.), pp. 1250–1318. American Society of Plant Physiologists, Rockville.

Debnam, P. M., and Emes, M. J. (1999). Subcellular distribution of enzymes of the oxidative pentose phosphate pathway in root and leaf tissues. J. Exp. Bot. 50, 1653–1661.

Denyer, K., Dunlap, F., Thorbjornsen, T., Keeling, P., and Smith, A. M. (1996). The major form of ADPglucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol. 112, 779–785.

Dieuaide-Noubhani, M., Raffard, G., Canioni, P., Pradet, A., and Raymond, P. (1995). Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C- or 14C-labeled glucose. J. Biol. Chem. 270, 13147–13159.

Dieuaide-Noubhani, M., Canioni, P., and Raymond, P. (1997). Sugar-starvation-induced changes of carbon metabolism in excised maize root tips. Plant Physiol. 115, 1505–1513.

Dixon, R. A., and Sumner, L. W. (2003). Legume natural products: Understanding and manipulating complex pathways for human and animal health. Plant Physiol. 131, 878–885.

Edwards, J. S., and Palsson, B. O. (2000a). Robustness analysis of the Escherichia coli metabolic network. Biotechnol Prog. 16, 927–939.

Edwards, J. S., and Palsson, B. O. (2000b). The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97, 5528–5533.

Edwards, J. S., Ibarra, R. U., and Palsson, B. O. (2001). in silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19, 125–130.

Edwards, S., Nguyen, B.-T., Do, B., and Roberts, J. K. M. (1998). Contribution of malic enzyme, pyruvate kinase, phosphoenolpyruvate carboxylase and the Krebs cycle to respiration and biosynthesis and to intracellular pH regulation during hypoxia in maize root tips observed by nuclear magnetic resonance and gas chromatography-mass spectrometry. Plant Physiol. 116, 1073–1081.

Eisenreich, W., Rohdich, F., and Bacher, A. (2001). Deoxyxylulosephosphate pathway to terpenoids. Trends Plant Sci. 6, 78–84.

Emmerling, M., Dauner, M., Ponti, A., Fiaux, J., Hochuli, M., Szyperski, T., Wü thrich, K., Bailey, J. E., and Sauer, U. (2002). Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J. Bacteriol. 184, 152–164.
Famili, I., Mahadevan, R., and Palsson, B. O. (2005). k-cone analysis: Determining all candidate values for kinetic parameters on a network scale. Biophys. J. 88, 1616–1625.

Farquhar, G. D., von Caemmerer, S., and Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90.

Farré, E. M., Tiessen, A., Roessner, U., Geigenberger, P., Trethewey, R. N., and Willmitzer, L. (2001). Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiol. 127, 685–700.

Fell, D. (1997). ‘‘Understanding the Control of Metabolism,’’ 301 p. Portland Press, London. Fernie, A. R., Roscher, A., Ratcliffe, R. G., and Kruger, N. J. (2001). Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta 212, 250–263.

Fernie, A. R., Swiedrych, A., Tauberger, E., Lytovchenko, A., Trethewey, R. N., and Willmitzer, L. (2002). Potato plants exhibiting combined antisense repression of cytosolic and plastidial isoforms of phosphoglucomutase surprisingly approximate wild type with respect to the rate of starch synthesis. Plant Physiol. Biochem. 40, 921–927.

Giegé, P., Heazlewood, J. L., Roessner-Tunali, U., Millar, A. H., Fernie, A. R., Leaver, C. J., and Sweetlove, L. J. (2003). Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. Plant Cell 15, 2140–2151.

Giersch, C. (2000). Mathematical modeling of metabolism. Curr. Opin. Plant. Biol. 3, 249–253.

Haake, V., Zrenner, R., Sonnewald, U., and Stitt, M. (1998). A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. Plant J. 14, 147–157.

Haake, V., Geiger, M., Walch-Liu, P., Engels, C., Zrenner, R., and Stitt, M. (1999). Changes in aldolase activity in wild-type potato plants are important for acclimation to growth irradiance and carbon dioxide concentration, because plastid aldolase exerts control over the ambient rate of photosynthesis across a range of growth conditions. Plant J. 17, 479–489.

Hanson, A. D., Gage, D. A., and Shachar-Hill, Y. (2000). Plant one-carbon metabolism and its engineering. Trends Plant Sci. 5, 206–213.

Harrison, E. P., Willingham, N. M., Lloyd, J. C., and Raines, C. A. (1998). Reduced sedoheptulose-1,7- bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 204, 27–36.

Henkes, S., Flachmann, R., Sonnewald, U., and Stitt, M. A. (2001). A small decrease of plastid transketolase expression in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13, 535–551.

Jamshidi, N., Edwards, J. S., Fahland, T., Church, G. M., and Palsson, B. O. (2001). Dynamic simulation of the human red blood cell metabolic network. Bioinformatics 17, 286–287.

Kanehisa, M., Goto, S., Kawashima, S., and Nakaya, A. (2002). The KEGG databases at GenomeNet. Nucleic Acids Res. 30, 42–46.

Klamt, S., and Stelling, J. (2003). Two approaches for metabolic pathway analysis? Trends Biotechnol. 21, 64–69.

Klein, D., Morcuende, R., Stitt, M., and Krapp, A. (2000). Regulation of nitrate reductase expression in leaves by nitrate and nitrogen metabolism is completely overridden when sugars fall below a critical level. Plant Cell Environ. 23, 863–871.

Koebmann, B. J., Westerhoff, H. V., Snoep, J. L., Nilsson, D., and Jensen, P. R. (2002). The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 184, 3909–3916.

Komina, O., Zhou, Y., Sarath, G., and Chollet, R. (2002). In vivo and in vitro phosphorylation of membrane and soluble forms of soybean nodule sucrose synthase. Plant Physiol. 129, 1664–1673.

Kossmann, J., Sonnewald, U., and Willmitzer, L. (1994). Reduction of the chloroplastic fructose-1,6- bisphosphatase in transgenic potato plants impairs photosynthesis and plant growth. Plant J. 6, 637–650.

Kruger, N. J., Ratcliffe, R. G., and Roscher, A. (2003). Quantitative approaches for analysing fluxes through plant metabolic networks using NMR and stable isotope labelling. Phytochem. Rev. 2, 17–30.

Kruger, N. J., and Von Schaewen, A. (2003). The oxidative pentose phosphate pathway: Structure and organisation. Curr. Opin. Plant. Biol. 6, 236–246.

Lo Piero, A. R., Cultrone, A., Monachello, D., and Petrone, G. (2003). Different kinetic and regulatory properties of soluble and membrane-bound nitrate reductases in tomato leaves. Plant Sci. 165, 139–145.

Macdonald, F. D., and Buchanan, B. B. (1997). The reductive pentose phosphate pathway and its regulation. In ‘‘Plant Metabolism’’ (D. T. Dennis, D. H. Turpin, D. D. Lefebvre, and D. B. Layzell, eds.), pp. 299–313. Longman, Harlow.

Marx, A., Eikmanns, B. J., Sahm, H., De Graaf, A. A., and Eggeling, L. (1999). Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab. Eng. 1, 35–48.

Matt, P., Krapp, A., Haake, V., Mock, H. P., and Stitt, M. (2002). Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. Plant J. 30, 663–677.

McNeil, S. D., Nuccio, M. L., Rhodes, D., Shachar-Hill, Y., and Hanson, A. D. (2000a). Radiotracer and computer modelling evidence that phospho-base methylation is the main route of choline synthesis in tobacco. Plant Physiol. 123, 371–380.

McNeil, S. D., Rhodes, D., Russell, B. L., Nuccio, M. L., Shachar-Hill, Y., and Hanson, A. D. (2000b). Metabolic modelling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco. Plant Physiol. 124, 153–162.

Morandini, P., and Salamini, F. (2003). Plant Biotechnology and breeding: Allied for years to come. Trends Plant Sci. 8, 70–75.

Morgan, J. A., and Rhodes, D. (2002). Mathematical modelling of plant metabolic pathways. Metab. Eng. 4, 80–89.

Mulquiney, P. J., and Kuchel, P. W. (2003). ‘‘Modelling Metabolism with Mathematica,’’ 309 p. CRC Press, Boca Raton.

Munoz, F. J., Baroja-Fernandez, E., Moran-Zorzano, M. T., Viale, A. M., Etxeberria, E., Alonso- Casajus, N., and Pozueta-Romero, J. (2005). Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves. Plant Cell Physiol. 46, 1366–1376.

Neuhaus, H. E., and Emes, M. J. (2000). Nonphotosynthetic metabolism in plastids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 111–140.

Neuhaus, H. E., Häusler, R. E., and Sonnewald, U. (2005). No need to shift the paradigm on the pathway to transitory starch in leaves. Trends Plant Sci. 10, 154–156.

Niederberger, P., Prasad, R., Miozzari, G., and Kacser, H. (1992).A strategy for increasing an in vivo flux by genetic manipulations—the tryptophan system of yeast. Biochem. J. 287, 473–479.

Oh, M.-K., and Liao, J. C. (2000). Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli.Biotechnol. Prog. 16, 278–286.

Oh, M.-K., Rohlin, L., Kao, K. C., and Liao, J. C. (2002). Global expression profiling of acetate grown Escherichia coli. J. Biol. Chem. 277, 13175–13183.

Oliver, S. (2002). Demand management in cells. Nature 418, 33–34.

Papin, J. A., Price, N. D., Wiback, S. J., Fell, D. A., and Palsson, B. O. (2003). Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28, 250–258.

Paul, M. J., Knight, J. S., Habash, D., Parry, M. A. J., Lawlor, D. W., Barnes, S. A., Loynes, A., and Gray, J. C. (1995). Reduction in phosphoribulokinase activity by antisense RNA in transgenic tobacco: Effect on CO2 assimilation and growth in low irradiance. Plant J. 7, 535–542.

Petersen, S., De Graaf, A. A., Eggeling, L., Mö llney, M., Wiechert, W., and Sahm, H. (2000). In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J. Biol. Chem. 275, 35932–35941.

Petersen, S., Mack, C., De Graaf, A. A., Riedel, C., Eikmanns, B. J., and Sahm, H. (2001). Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic regulation mechanisms in vivo. Metab. Eng. 3, 344–361.

Picault, N., Hodges, M., Palmieri, L., and Palmieri, F. (2004). The growing family of mitochondrial carriers in Arabidopsis. Trends Plant Sci. 9, 138–146.

Poolman, M. G., Fell, D. A., and Thomas, S. (2000). Modelling photosynthesis and its control. J. Exp. Bot. 51, 319–328.

Poolman, M. G., Fell, D. A., and Raines, C. A. (2003). Elementary modes analysis of photosynthate metabolism in the chloroplast stroma. Eur. J. Biochem. 270, 430–439.

Price, N. D., Papin, J. A., Schilling, C. H., and Palsson, B. O. (2003). Genome-scale microbial in silico models: The constraints-based approach. Trends Biotechnol. 21, 162–169.

Price, N. D., Reed, J. L., and Palsson, B. O. (2004). Genome-scale models of microbial cells: Evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897.

Pritchard, L., and Kell, D. B. (2002). Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis. Eur. J. Biochem. 269, 3894–3904.

Ratcliffe, R. G., and Shachar-Hill, Y. (2006). Measuring multiple fluxes through plant metabolic networks. Plant J. 45, 490–511.

Regierer, B., Fernie, A. R., Springer, F., Perez-Melis, A., Leisse, A., Koehl, K., Willmitzer, L., Geigenberger, P., and Kossmann, J. (2002). Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat. Biotechnol. 20, 1256–1260.

Rontein, D., Dieuaide-Noubhani, M., Dufourc, E. J., Raymond, P., and Rolin, D. (2002). The metabolic architecture of plant cells. Stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. J. Biol. Chem. 277, 43948–43960.

Roscher, A., Kruger, N. J., and Ratcliffe, R. G. (2000). Strategies for metabolic flux analysis in plants using stable isotope labelling. J. Biotechnol. 77, 81–102.

Rylott, E. L., Hooks, M. A., and Graham, I. A. (2001). Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana. Biochem. Soc. Trans. 29, 283–287.

Sauer, U., Lasko, D. R., Fiaux, J., Hochuli, M., Glaser, R., Szyperski, T., Wü thrich, K., and Bailey, J. E. (1999). Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central metabolism. J. Bacteriol. 181, 6679–6688.

Schomburg, I., Chang, A., and Schomburg, D. (2002). BRENDA, enzyme data and metabolic information. Nucleic Acids Res. 30, 47–49.
Schuster, S., Dandekar, T., and Fell, D. A. (1999). Detection of elementary flux modes in biochemical networks: A promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17, 53–60.

Schwab, W. (2003). Metabolome diversity: Too few genes, too many metabolites. Phytochemistry 62, 837–849.

Schwender, J., Ohlrogge, J. B., and Shachar-Hill, Y. (2003). A flux model of glycolysis and the oxidative pentose phosphate pathway in developing Brassica napus embryos. J. Biol. Chem. 278, 29442–29453.

Schwender, J., Ohlrogge, J., and Shachar-Hill, Y. (2004). Understanding flux in plant metabolic networks. Curr. Opin. Plant. Biol. 7, 309–317.

Smirnoff, N., Conklin, P. L., and Loewus, F. A. (2001). Biosynthesis of ascorbic acid in plants: A renaissance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 437–467.

Sriram, G., Fulton, D. B., Iyer, V. V., Peterson, J. M., Zhou, R., Westgate, M. E., Spalding, M. H., and Shanks, J. V. (2004). Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labelling, two-dimensional [13C, 1H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol. 136, 3043–3057.

Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., and Gilles, E. D. (2002). Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190–193.

Stitt, M., and Schulze, E.-D. (1994). Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ. 17, 465–487.

Stitt, M., and Sonnewald, U. (1995). Regulation of metabolism in transgenic plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 341–368.

Sumner, L. W., Mendes, P., and Dixon, R. A. (2003). Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry 62, 817–836.

Sweetlove, L. J., Last, R. L., and Fernie, A. R. (2003). Predictive metabolic engineering: A goal for systems biology. Plant Physiol. 132, 420–425.

Szyperski, T. (1998). 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q. Rev. Biophys. 31, 41–106.

ter Kuile, B. H., and Westerhoff, H. V. (2001). Transcriptome meets metabolome: Hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett. 500, 169–171.

Teusink, B., Passarge, J., Reijenga, C. A., Esgalhado, E., Van Der Weijden, C. C., Schepper, M., Walsh, M. C., Bakker, B. M., Van Dam, K., Westerhoff, H. V., and Snoep, J. L. (2000). Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267, 5313–5329.

Thorneycroft, D., Sherson, S. M., and Smith, S. M. (2001). Using gene knockouts to investigate plant metabolism. J. Exp. Bot. 52, 1593–1601.

Weber, A. P. M., Schwacke, R., and Flugge, U. I. (2005). Solute transporters of the plastid envelope membrane. Annu. Rev. Plant Biol. 56, 133–164.

Wiback, S. J., and Palsson, B. O. (2002). Extreme pathway analysis of human red blood cell metabolism. Biophys. J. 83, 808–818.

Wiechert, W. (2001). 13C metabolic flux analysis. Metab. Eng. 3, 195–206.

Wiechert, W. (2002). Modeling and simulation: Tools for metabolic engineering. J.Biotechnol. 94, 37–63.

Wiechert, W., Möllney, M., Petersen, S., and De Graaf, A. A. (2001). A universal framework for 13C metabolic flux analysis. Metab. Eng. 3, 265–283.

Wienkoop, S., Ullrich, W. R., and Stohr, C. (1999). Kinetic characterization of succinate-dependent plasma membrane-bound nitrate reductase in tobacco roots. Physiol. Plantarum 105, 609–614.

Wink, M. (ed.). (1999). ‘‘Biochemistry of Plant Secondary Metabolism,’’ 374 p. CRC Press, Boca Raton. Yao, K., De Luca, V., and Brisson, N. (1995). Creation of a metabolic sink for tryptophan alters the phenylpropanoid pathway and the susceptibility of potato to Phytophthora infestans. Plant Cell 7, 1787–1799.

Copyrights 2012 © | Disclaimer