-
F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann. Advance Inorganic Chemistry, 6th ed.
Hoboken, NJ: Wiley, 1999, 1376pp.
-
A.J. Parker. Introduction: The chemistry of copper. In: J.F. Loneragan, A.D. Robson, R.D. Graham,
eds. Copper in Soils and Plants. New York: Academic Press, 1981, pp. 1-22.
-
K.B. Krauskopf. Geochemistry of micronutrients. In: J.J. Mortvedt, P.M. Giordano,W.L. Lindsay, eds.
Micronutrients in Agriculture. Madison, WI.: Soil Science Society of America, 1972, pp. 7-40.
-
D.C. Adriano. Trace Elements in the Terrestrial Environment. New York: Springer, 1986, 533pp.
-
A.L. Sommer. Copper as an essential for plant growth. Plant Physiol. 6:339-345, 1931.
-
C.B. Lipman, G. Mackinney. Proof of the essential nature of copper for higher green plants. Plant
Physiol. 6:593-599, 1931.
-
W. Reuther, C.K. Labanauskas. Copper. In: H.D. Chapman, ed. Diagnostic Criteria for Plants and Soils.
Berkeley, CA: University of California Division of Agricultural Sciences Press, 1966, pp. 394-404.
-
J. Delas. The toxicity of copper accumulated in soils. Agrochemica 7:258-288, 1963.
-
A. Kabata-Pendias, H. Pendias. Trace Elements in Soils and Plants, 2nd ed. Boca Raton, FL: CRC
Press, 1992.
-
L. Roca- P�rez, P. P�rez-Berm�dez, R. Boluda. Soil characteristics, mineral nutrients, biomass, and
cardenolide production in Digitalis obscura wild populations. J. Plant Nutr. 25:2015-2026, 2002.
-
V. Chaignon, F. Bedin, P. Hinsinger. Copper bioavailability and rhizosphere pH changes as affected by
nitrogen supply for tomato and oilseed rape cropped on an acidic and calcareous soil. Plant Soil.
243:219-228, 2002.
-
J.R. Peralta-Videa, J.L. Gardea-Torresdey, E. Gomez, K.J. Tiemann, J.G. Parsons, G. Carrillo. Effect
of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal
uptake. Environ. Pollut. 119:291-301, 2002.
-
V. Chaignon, D. DiMalta, P. Hinsinger. Fe-deficiency increases Cu acquisition by wheat cropped in a
Cu-contaminated vineyard soil. New Phytol. 154:121-130, 2002.
-
D. Liu, W. Jiang, W. Hou. Uptake and accumulation of copper by roots and shoots of maize.
J. Environ. Sci. 13:228-232, 2001.
-
Z. Nan, G. Cheng. Copper and zinc uptake by spring wheat (Triticum aestivum L.) and corn (Zea Mays
L.) grown in Baiyin region. Bull. Environ. Contam. Toxicol. 67:83-90, 2001.
-
G.A. Pederson, G.E. Brink, T.E. Fairbrother. Nutrient uptake in plant parts of sixteen forages fertilized
with poultry litter: Nitrogen, phosphorus, potassium, copper, and zinc. Agron. J. 94:895-904,
2002.
-
N.E. Nielsen. A transport kinetic concept for ion uptake by plants. III. Test of a concept by results from
water culture and pot experiments. Plant Soil 45:659-677, 1976.
-
M.F. Quartacci, E. Cosi, S. Meneguzzo, C. Sgherri, and F. Navari-Izzo. Uptake and translocation of
copper in Brassicaceae. J. Plant Nutr. 26:1065-1083, 2003.
-
H. Marschner. Mineral Nutrition of Higher Plant, 2nd ed. San Diego, CA: Academic Press, 1995.
889pp.
-
T. Cheng, H.E. Allen. Prediction of uptake of copper from solution by lettuce (Lactuca sativa
Romance). Environ. Toxic Chem. 20:2544-2551, 2001.
-
Y.K. Soon, G.W. Clayton, P.J. Clarke. Content and uptake of phosphorus and copper by spring wheat:
Effect of environment, genotype, and management. J. Plant Nutr. 20:925-937, 1997.
-
Z. Xiong, Y. Li, B. Xu. Nutritional influence on copper accumulation by Brassica pekinensis Rupr.
Ecotoxic Environ. Safety 53:200-205, 2002.
-
A. Mozafar. Distribution of nutrient elements along the maize leaf: Alteration by iron deficiency.
J. Plant Nutr. 20:999-1005, 1997.
-
T. Landberg, M. Greger. Influence of selenium on uptake and toxicity of copper and cadmium in pea
(Pisum sativum) and wheat (Triticum aestivum). Physiol. Plant 90:637-644, 1994.
-
C. van Vliet, C.R. Anderson, C.S. Cobbett. Copper-sensitive mutant of Arabidopsis thaliana. Plant
Physiol. 109:871-878, 1995.
-
R.M. Welch, W.A. Norvell, S.C. Schaefer, J.E. Shaff, L.V. Kochian. Induction of iron(III) and
copper(II) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: Does the root cell plasmalemma
Fe(III)-chelate reductase perform a general role in regulating cation uptake? Planta 190: 555-561, 1993.
-
E. Lesuisse, P. Labbe. Iron reduction and trans-plasma membrane electron transport in the yeast
Saccharomyces cerevisiae. Plant Physiol. 100:769-777, 1992.
-
T.H. Garmo, A. Fr�slie, R. H�ie. Levels of copper, molybdenum, sulfur, zinc, selenium, iron and manganese
in native pasture plants from a mountain area in southern Norway. Acta Agric. Scand.
36:147-161, 1986.
-
P. Mantovi, G. Bonazzi, E. Maestri, N. Marmiroli. Accumulation of copper and zinc from liquid
manure in agricultural soils and crop plants. Plant Soil 250:249-257, 2003.
-
J. Kubota. Copper status of United States soils and forage plants. Agron. J. 75:913-918, 1983.
-
M. Kaplan. Accumulation of copper in soils and leaves of tomato plants in greenhouses in Turkey.
J. Plant Nutr. 22:237-244, 1999.
-
J.M. Swiader, G.W. Ware. Producing Vegetable Crops, 5th ed. Danville, IL: Interstate Publishers, Inc.,
2002, 658pp.
-
R.F. Brennan, M.D.A. Bolland. Comparing copper requirements for faba bean, chickpea, and lentil
with spring wheat. J. Plant Nutr. 26:883-899, 2003.
-
F. Vinit-Dunand, D. Epron, B. Alaoui-Soss�m, P.-M. Badot. Effects of copper on growth and on photosynthesis
of mature and expanding leaves in cucumber plants. Plant Sci. 163:53-58, 2002.
-
T.M. Reinbott, D.G. Blevins, M.K. Schon. Content of boron and other elements in main stems and
branch leaves and seed of soybean. J. Plant Nutr. 20:831-842, 1997.
-
R. Babilla-Ohlbaum, R. Ginocchio, P.H. Rodr�guez, A C�spedes, S. Gonz�lez, H.E. Allen, G.E. Lagos.
Relationship between soil copper content and copper content of selected crop plants in central Chile.
Environ. Toxic Chem. 20:2749-2757, 2001.
-
E. Pip, C. Mesa. Cadmium, copper, and lead in two species of Artemisia (Compositae) in southern
Manitoba, Canada. Bul.l Environ. Contam. Toxicol. 69:644-648, 2002.
-
K. Bunzl, M. Trautmannsheimer, P. Schramel, W. Reifenh�user. Availability of arsenic, copper, lead,
thallium, and zinc to various vegetables grown in slag-contaminated soils. J. Environ. Qual.
30:934-939, 2001.
-
J. Lin, W. Jiang, D. Liu. Accumulation of copper by roots, hypocotyls, cotyledons and leaves of
sunflower (Helianthus annuus L.). Bioresource Tech. 86:151-155, 2003.
-
J.J. Mortvedt. Bioavailability of micronutrients. In: ME Sumner, ed. Handbook of Soil Science. Boca
Raton, Fla.: CRC Press, 2000, pp. D71-D88.
-
D. Mengel, G. Rehm. Fundamentals of fertilizer application. In: M.E. Sumner, ed. Handbook of Soil
Science. Boca Raton, FL: CRC Press, 2000, pp. D155-D174.
-
R.E. Karamanos, G.A. Kruger, J.W.B. Stewart. Copper deficiency in cereal and oilseed crops in northern
Canadian Prairie soils. Agron. J. 78:317-323, 1986.
-
L. Dahleen. Improved plant regeneration from barley callus cultures by increased copper levels. Plant
Cell Tissue Org. Cult. 43:267-269, 1995.
-
G. Wojnarowiez, C. Jacquard, P. Devaux, R.S. Sangwan, C. Cl�ment. Influence of copper sulfate on
anther culture in barley (Hordeum vulgare L.). Plant Sci. 162:843-847, 2002.
-
M.B. Ali, P. Vajpayee, R.D. Tripathi, U.N. Rai, S.N. Singh, S.P. Singh. Phytoremediation of lead,
nickel, and copper by Salix acmophylla Boiss: Role of antioxidant enzymes and antioxidant substances.
Bull. Environ. Contam. Toxicol. 70:462-469, 2003.
-
S.P. McGrath. Phytoextraction for soil remediation. In: R.R. Brooks, ed. Plants That Hyperaccumulate
Heavy Metals. Oxon, U.K.: CAB International, 1998, pp. 261-287.
-
R.R. Brooks. Phytochemistry of hyperaccumlators. In: R.R. Brooks, ed. Plants That Hyperaccumulate
Heavy Metals. Oxon, U.K.: CAB International, 1998, pp.15-53.
-
R.R. Brooks. Geobotany and hyperaccumlators. In: R.R. Brooks, ed. Plants That Hyperaccumulate
Heavy Metals. Oxon, U.K.: CAB International, 1998, pp. 55-94.
-
R.S. Morrison, R.R. Brooks, R.D. Reeves, F. Malaisse. Copper and cobalt uptake by metallophytes
from Zaire. Plant Soil 53:535-539, 1979.
-
F. Itanna, B. Coulman. Phyto-extraction of copper, iron, manganese, and zinc from environmentally
contaminated sites in Ethiopia, with three grass species. Commun. Soil Sci. Plant Anal. 34:111-124, 2003.
-
E. Grill, E.-L. Winnacker, M.H .Zenk. Phytochelatins: The principle heavy-metal complexing peptides
of higher plants. Science 230:674-676, 1985.
-
E. Grill, E.-L. Winnacker, M.H. Zenk. Phytochelatins, a class of heavy-metal-binding peptides from
plants, are functionally analogous to metallothioneins. Proc. Natl. Acad. Sci. 84:439-443, 1987.
-
W.E. Rauser. Structure and function of metal chelators produced by plants: The case for organic acids,
amino acids, phytin, and metallothioneins. Cell Biochem. Biophys. 31:19-48, 1999.
-
D.E. Salt, D.A. Thurman, A.B. Tomsett, A.K. Sewell. Copper phytochelatins of Mimulus guttatus.
Proc. R. Soc. Lond. B 236:79-89, 1989.
-
M.J. Yang, X.E. Yang, V. R�mheld. Growth and nutrient composition of Elsholtzia splendens Nakai
under copper toxicity. J. Plant Nutr. 25:1359-1375, 2002.
-
J.R. Peralta, J.L. Gardea-Torresdey, K.J. Tiemann, E. Gomez, S. Arteaga, E. Rascon, J.G. Parsons.
Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago
sativa L.). Bull. Environ. Contam. Toxicol. 66:727-734, 2001.
-
A. Reilly, C. Reilly. Zinc, lead, and copper tolerance in the grass Stereochlaena cameronii (Stapf)
Clayton. New Phytol. 72:1041-1046, 1973.
-
A.J. Pollard, K.D. Powell, F.A. Harper, J.A.C. Smith. The genetic basis of metal hyperaccumulation
in plants. Critical Rev. Plant Sci. 21:539-566, 2002.
-
W.S. Shu, Z.H. Ye, C.Y. Lan, Z.Q. Zhang, M.H. Wong. Lead, zinc, and copper accumulation and
tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ. Pollut. 120:445-453,
2002.
-
L. Wu, A.L. Kruckeberg. Copper tolerance in two legume species from a copper mine habitat. New
Phytol. 99:565-570, 1985.
-
M.W. Paschke, E.F. Redente. Copper toxicity thresholds for important restoration grass species of the
western United States. Environ. Toxic Chem. 21:2692-2697, 2002.
-
M.O. Torres, A. DeVarennes. Remediation of a sandy soil artificially contaminated with copper using
a polyacrylate polymer. Soil Use Mgt. 14:106-110, 1998.
-
C.D. Walker, J. Webb. Copper in plants: Forms and behaviour. In: J.F. Loneragan, A.D. Robson, R.D.
Graham, eds. Copper in Soils and Plants. New York: Academic Press, 1981, pp. 198-212.
-
M.D. Harrison, C.E. Jones, C.T. Dameron. Copper chaperones: Function, structure and copperbinding
properties. JBIC 4:145-153, 1999.
-
Q. Yu, Z. Rengel. Micronutrient deficiency influences plant groth and activities of superoxide dismutases
in narrow-leaf lupins. Ann. Bot. 83:175-182, 1999.
-
W. Bussler. Physiological functions and utilization of copper. In: J.F. Loneragan, A.D. Robson, R.D.
Graham, eds. Copper in Soils and Plants. New York: Academic Press, 1981, pp. 213-234.
-
H. K�pper, I. Setl�k, M. Spiller, F.C. K�pper, O. Pr�sil. Heavy metal-induced inhibition of photosynthesis:
Targets of in vivo heavy metal chlorophyll formation. J. Phycol. 38:429-441, 2002.
-
E.C. Large. The Advance of the Fungi. New York: Holt, 1940. 488pp.
-
J. Kubota, W.H. Allaway. Geographic distribution of trace element problems. In: J.J. Mortvedt, P.M.
Giordano, W.L. Lindsay, eds. Micronutrients in Agriculture, Madison, WI: Soil Science Society of
America, 1972, pp. 525-554.
-
G.W. Ware, D.M. Whitacre. The Pesticide Book, 6th ed. Willoughby, OH: MeisterPro Information
Resources, 2004, 487pp.
-
E. Semu, B.R. Singh. Accumulation of heavy metals in soils and plants after long-term use of fertilizers
and fungicides in Tanzania. Fert. Res. 44: 241-248, 1996.
-
M.H. Wong, A.D. Bradshaw. A comparison of the toxicity of heavy metals, using root elongation of
rye grass, Lolium perenne. New Phytol. 91:255-261, 1982.
-
G. Ouzounidou, I. Illias, H. Tranopoulou, S. Karataglis. Amelioration of copper toxicity by iron on
spinach physiology. J. Plant Nutr. 21:2089-2101, 1998.
-
H.W. Woolhouse, S. Walker. The physiological basis of copper toxicity and copper tolerance in higher
plants. In: J.F. Loneragan, A.D. Robson, R.D. Graham, eds. Copper in Soils and Plants. New York:
Academic Press, 1981, pp. 235-262.
-
G. Sandman, P. Boger. Copper-mediated lipid-peroxidation processes in photosynthetic membranes.
Plant Physiol. 66:797-800, 1980.
-
C.R. Caldwell. Effect of elevated copper on the ultraviolet light-absorbing compounds of cucumber
cotyledon and leaf tissues. J. Plant Nutr. 24:283-295, 2001.
-
M. Miyazawa, S.M.N. Giminez, M. Josefa, S. Yabe, E.L. Oliveira, M.Y. Kamogawa. Absorption and
toxicity of copper and zinc in bean plants cultivated in soil treated with chicken manure. Water Air Soil
Pollut. 138:211-222, 2002.
-
A. Vassilev, F.C. Lidon, M. do C�u Matos, J.C. Ramalho, I. Yordanov. Photosynthetic performance and
content of some nutrients in cadmium- and copper-treated barley plants. J. Plant Nutr. 25:2343-2360,
2002.
-
H. Panou-Filotheou, A.M. Bosabalidis, S. Karataglis. Effects of copper toxicity on leaves of oregano
(Origanum vulgare subsp. hirtum). Ann. Bot. 88:207-214, 2001.
-
K. Burda, J. Kruk, K. Strzalka, G.H. Schmid. Stimulation of oxygen evolution in photosystm II by
copper(II) ions. Z Naturforsch 57:853-857, 2002.
-
C. Jegersch�ld, J.B. Arellano,W.P. Schr�der, P.J. van Kan, M. Bar�n, S. Styring. Copper(II) inhibition
of electron transfer through photosystem II studied by EPR spectroscopy. Biochemistry
34:12747-12754, 1995.
-
C. Jegersch�ld, F. McMillan, WLubitz, A.W. Rutherford. Effect of copper and zinc ions on photosystem
II. Studies by EPR spectroscopy. Biochemistry 38:12439-12445, 1999.
-
I. Yruela, G. Gatzen, R. Picorel, A.R. Holzwarth. Cu(II)-inhibitory effect on photosystem II from
higher plants. A picosecond time-resolved fluorescence study. Biochemistry 35:9469-9474, 1996.
-
D.P. Singh, S.P. Singh. Action of heavy metals on Hill activity and O2 evolution. Plant Physiol.
83:12-14, 1987.
-
N. Mohanty, I. Vass, S. Demeter. Copper toxicity affects photosystem II electron transport at the secondary
quinone accpetor (QB). Plant Physiol. 90:175-179, 1989.
-
W.P. Schr�der, J.B. Arellano, T. Bittner, M. Bar�n, H.J. Eckert, G. Renger. Flash induced absorption
spectroscopy studies of copper interaction with photosystem II in higher plants. J. Biol. Chem.
269:32856-32870, 1994.
-
J.B. Arellano, J.J. Lazaro, J. Lopez-Gorge, M. Baron. The donor side of photosystem II as the copperinhibitory
binding site. Photosynth. Res. 45:127-134, 1885.
-
B.T. Brown, B.M. Rattigan. Toxiciy of soluble copper and other metals to Elodea canadensis. Environ.
Pollut. 20:303-314, 1979.
-
T.K. Mal, P. Adorjan, A.L. Corbett. Effect of copper on growth of an aquatic macrophyte, Elodea
canadensis. Environ Pollut. 120:307-311, 2002.
-
M. Burzynski, E. Kolano. In vivo and in vitro effects of copper and cadmium on the plasma membrane
H-ATPase from cucumber (Cucumis sativus L.) and maize (Zea mays L.) roots. Acta Physiol. Plant
25:39-45, 2003.
-
Z. Shen, F. Zhang, F. Zhang. Toxicity of copper and zinc in seedlings of mung bean and introducing
accumulation of polyamine. J. Plant Nutr. 21:1153-1162, 1998.
-
C. Sgherri, M.F. Quartacci, R. Izzo, F. Navari-Izzo. Relation between lipoic acid and cell redox status
in wheat grown in excess copper. Plant Physiol. Biochem. 40:591-597, 2002.
-
N.K. Fageria. Adequate and toxic levels of copper and manganese in upland rice, common bean, corn,
soybean, and wheat grown on an oxisol. Commun. Soil Sci. Plant Anal. 32:1659-1676, 2001.
-
E.-L. Chen,Y.-A. Chen, L.-M. Chen, Z.-H. Liu. Effect of copper on peroxidase activity and lignin content
if Raphanus sativus. Plant Physiol. Biochem. 40:429-444, 2002.
-
D.R. Parker, J.F. Pedler, Z.A.S. Ahnstrom, M. Resketo. Reevaluating the free-ion activity model of
trace metal toxicity toward higher plants: Experimental evidence with copper and zinc. Environ. Toxic
Chem. 20:899-906, 2001.
-
M.B. McBride. Forms and distribution of copper in solid and solution phases of soil. In: J.F.
Loneragan, A.D. Robson, R.D. Graham, eds. Copper in Soils and Plants. New York: Academic Press,
1981, pp. 25-45.
-
S.A. Barber. Soil Nutrient Bioavailability, 2nd ed. New York: Wiley, 1995, 398pp.
-
D.E. Baker, M.C. Amacher. Nickel, copper, zinc, and cadmium. In: A.L. Page, ed. Methods of Soil
Analysis, Part 2, Chemical and Microbiological Properties, 2nd ed., Agronomy 9. Madison, WI:
American Society of Agronomy, 1982, pp. 323-336.
-
M. Soumar�, F.M.G. Tack, M.G. Verloo. Distribution and availability of iron, manganese, zinc, and
copper in four tropical agricultural soils. Comm. Soil Sci. Plant Anal. 34:1023-1038, 2003.
-
W.L. Lindsay. Chemical Equilibria in Soils, 2nd ed. Caldwell, NJ: Blackburn Press, 2001, 449 pp.
-
Z. Wang, X. Shan, S. Zhang. Effects of exogenous rare earth elements of fractions of heavy metals in
soils and bioaccumulation by plants. Commun. Soil Sci. Plant Anal. 34:1573-1588, 2003.
-
R. Rupa, L.M. Shukla. Comparison of four extractants and chemical fractions for assessing available
zinc and copper in soils in India. Commun. Soil Sci. Plant Anal. 302579-2591, 1999.
-
R.P. Narwal, B.R. Singh, B. Salbu. Association of cadmium, zinc, copper, and nickel with components
in naturally heavy metal-rich soils studied by parallel and sequential extractions. Commun. Soil Sci.
Plant Anal. 30:1209-1230, 1999.
-
B. Freedman, T.C. Hutchinson. Pollutants inputs from the atmosphere and accumulation in soils
and vegetation near a nickel-copper smelter at Sudbury, Ontario, Canada. Can. J. Bot. 58:108-132,
1980.
-
S. Yu, Z.L. He, C.Y. Huang, G.C. Chen, D.V. Calvert. Adsorption-desorption behavior of copper at
contaminated levels in red soils from China. J. Environ. Qual. 31:1129-1136, 2002.
-
N. Bolan, D. Adriano, S. Mani, A. Khan. Adsorption, complexation, and phytoavailability of copper
as influenced by organic manure. Environ. Toxic Chem. 22450-456, 2003.
-
A. Olayinka, G.O. Babalola. Effects of copper sulfate application on microbial numbers and respiration,
nitritier and urease activities, and nitrogen and phosphorus mineralization in an alfisol. Biol.
Agric. Hort. 19:1-8, 2001.
-
J.R. Sanders, C. Bloomfield. The influence of pH, ionic strength, and reactant concentration on copper
complexing by humified organic matter. J. Soil Sci. 31:53-63, 1980.
-
B.G. Ellis, B.D. Knezek. Adsorption reactions of micronutrients in soils. In: J.J. Mortvedt, P.M.
Giordano, W.L. Lindsay, eds. Micronutrients in Agriculture. Madison, WI: Soil Science Society of
America, 1972, pp. 59-78.
-
F. Pinamonti, G. Nicolini, A. Dalpiaz, G. Stringari, G. Zorzi. Compost use in Viticulture: Effect on
heavy metal levels in soil and plants. Commun. Soil Sci. Plant Anal. 30:1531-1549, 1999.
-
D.C. Martens, D.T. Westerman. Fertilizer applications for correcting micronutrient deficiencies. In:
J.J. Mortvedt, F.R. Cox, L.M. Shurman, R.M. Welch, eds. Micronutrients in Agriculture, 2nd ed.
Madison, WI.: Soil Science Society of America, 1991, pp. 549-592.
-
D.W. Franzen, M.V. McMullen. Spring Wheat Response to Copper Fertilization in North Dakota,
North Dakota State University Ext Rep 50, 1999, 5pp.
-
R.J. Haynes, R.S. Swift. Amounts and forms of micronutrient cations in a group of loessial grassland
soils of New Zealand. Geoderma 33:53-62, 1984.
-
H.A. Mills, J.B. Jones, Jr. Plant Analysis Handbook II. Athens, GA.: MicroMacro Publishing, Inc.,
1996, 422pp.
-
J.W. Gartrell. Distribution and correction of copper deficiency in crops and pastures. In: J.F.
Loneragan, A.D. Robson, R.D. Graham, eds. Copper in Soils and Plants. New York: Academic Press,
1981, pp. 313-349.
-
R.M. Davis, G. Hamilton, W.T. Lanini, T.H. Screen, C. Osteen. The Importance of Pesticides and
Other Pest Management Practices in U.S. Tomato Production. Doc I-CA-98. US Dept Agric Nat Agric
Pest Impact Asses Prog, Washington, DC, 1998.
-
Y. Luo, X. Jiang, L. Wu, J. Song, S. Wu, R. Lu, P. Christie. Accumulation and chemical fractionation
of Cu in a paddy soil irrigated with Cu-rich wastewater. Geoderma 115:113-120, 2003.
-
P.J. Rice, L.L. McConnell, L.P. Heighton, A.M. Sadeghi, A.R. Isensee, J.R. Teasdale, A.A. Abdul-Baki,
J.A. Harman-Fetcho, C.J. Hapeman. Comparison of copper levels in runoff from fresh-market vegetable
production using polyethylene much or a vegetative mulch. Environ. Toxic Chem. 21:24-30, 2002.
-
D.A. Moreno, G. Villora, J. Hern�ndez, N. Castilla, L. Romero. Accumulation of Zn, Cd, Cu, and Pb
in Chinese cabbage as influenced by climatic conditions under protected cultivation. J. Agric. Food
Chem. 50:1964-1969, 2002.
-
M.L. Failla, M.A. Johnson, J.R. Prohaska. Copper. In: B.A. Bowman, R.M. Russell, eds. Present
Knowledge in Nutrition, 8th ed. Washington, DC: ILSI Press, 2001, pp. 373-383.
-
D.G. Lurie, J.M. Holden, A. Schubert,W.R. Wolf, N.J. Miller-Ihli. The copper content of foods based
on a critical evaluation of published analytical data. J. Food Comp. Anal. 2:298-316, 1989.
-
United States Environmental Protection Agency. The EPA Region III Risk-Based Concentration Table.
Philadelphia, PA: USEPA, 1999.
-
D.C. Blood, O.M. Radostits, J.A. Henderson. Veterinary Medicine: A Textbook of the Diseases of
Cattle, Sheep, Pigs, Goats and Horses. 6th ed. London, U.K.: Bailliere Tindall, 1983, 1310pp.
-
S.P. Wang,Y.F. Wang, Z.Y. Hu, Z.Z. Chen, J. Fleckenstein, E. Schnug. Status of iron, manganese, copper,
and zinc of soils and plants and their requirements for ruminants in Inner Mongolia steppes of
China. Commun. Soil Sci. Plant Anal. 34:665-670, 2003.
-
D.M. Miller,W.P. Miller. Land application of wastes. In: M.E. Sumner, ed. Handbook of Soil Science.
Boca Raton, FL.: CRC Press, 2000, pp. G217-G245.
-
C.A. Owen. Copper Deficiency and Toxicity: Acquired and Inherited, in Plants, Animals, and
Humans. Park Ridge, NJ: Noyes Publications, 1981, 189pp.
-
L. Knobeloch, C. Shubert, J. Hayes, J. Clark, C. Fitzgerald, A.Fraundorff. Gastrointestinal upsets and
new copper plumbing-is there a connection? Wis. Med. J. 97:49-53, 1998.
-
J. Linn, W. Jiang, D. Liu. Accumulation of copper by roots, hypocotyls, coteledons, and leaves of
sunflower (Helianthus annuus L.). Bioresource Technol. 86:151-155, 2003.