Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
Main Menu
Please click the main subject to get the list of sub-categories
Services offered
  Section: Plant Nutrition » Other Beneficial Elements » Sodium
Please share with your friends:  


Sodium in Soils and Water
Sodium as an Essential Element
Beneficial Effects
  Growth Stimulation
  Interaction with Other Nutrients
Sodium in Fertilizers
Sodium Metabolism in Plants
  Effects on C4 Species
  Toxicity of Sodium
Intracellular and Intercellular Compartmentation
Sodium in Various Plant Species

  1. T.J. Flowers, A. Läuchli. Sodium versus potassium: substitution and compartmentation. In: A. Läuchli, R.L. Bielski, eds. Inorganic Plant Nutrition. Heidelberg, Berlin: Springer, 1983, pp. 651-681.

  2. FAO Land and Plant Nutrition Management Services. Table 1. Regional distribution of salt-affected soils in million ha., 2000.

  3. L.A. Richards. The Diagnosis and Improvement of Saline and Alkaline Soils. Davis, CA: USDA, 1954, pp. 1-160.

  4. K.K. Tanji. Agricultural Salinity Assessment and Management. New York: American Society of Civil Engineers, 1990, pp. 1-619.

  5. B. Hanson, S.R. Grattan, A. Fulton. Agricultural Salinity and Drainage. Davis, CA: USDA, 1993, pp. 1-156.

  6. F. Ghassemi, A.J. Jakeman, H.A. Nix. Salinisation of Land and Water Resources; Human Causes, Extent, Management and Case Studies. Sydney, Australia; Wallingford, UK: UNSW Press; CAB International, 1995.

  7. A. Läuchli, U. Lüttge. Salinity: Environment-Plants-Molecules. Dordrecht: Kluwer Academic Publishers, 2002.

  8. M. Pessarakli. Handbook of Plant and Crop Stress. New York: Marcel Dekker, 1999.

  9. I. Szabolcs. Salt-Affected Soils. Boca Raton: CRC Press, 1989.

  10. A.R. Yeo. Salinity resistance: physiologies and prices. Physiologia Plantarum 58:214-222, 1983.

  11. P. Neumann. Salinity resistance and plant growth revisited. Plant, Cell Environ. 20:1193-1198, 1997.

  12. J.J. Oertli. Extracellular salt accumulation, a possible mechanism of salt injury. Agrochimica 12:461-469, 1968.

  13. T.J. Flowers, M.A. Hajibagheri, A.R. Yeo. Ion accumulation in the cell walls of rice growing under saline conditions: evidence for the Oertli hypothesis. Plant, Cell Environ. 14:319-325, 1991.

  14. D.I. Arnon, P.R. Stout. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol. 14:371-375, 1939.

  15. A. Montasir, H. Sharoubeem, G. Sidrack. Partial substitution of sodium for potassium in water cultures. Plant Soil 25:181-194, 1966.

  16. H. Marschner. Why can sodium replace potassium in plants? In: Potassium in Biochemistry and Physiology. Eighth Colloquium of the International Potash Institute, Bern, 1971, pp. 50-63.

  17. R.A. Leigh, R.G. Wyn Jones. Cellular compartmentation in plant nutrition: the selective cytoplasm and the promiscuous vacuole. In: P.B. Tinker, A. Läuchli, eds. Advances in Plant Nutrition,Vol. 2. New York: Praeger, 1986, pp. 249-279.

  18. M.G. Lindhauer, H.E. Haeder, H. Beringer. Osmotic potentials and solute concentrations in sugar beet plants cultivated with varying potassium/sodium ratios. Zh. Pflanz. Boden 153:25-32, 1990.

  19. D. Nicholas. Minor mineral nutrients. Annu. Rev. Plant Physiol. 12:63-90, 1961.

  20. G.V. Subbarao, O. Ito, W.L. Berry, R.M. Wheeler. Sodium-a functional plant nutrient. Crit. Rev. Plant Sci. 22:391-416, 2003.

  21. G. Tyler. Rare earth elements in soil and plant systems-a review. Plant Soil 267:191-206, 2004.

  22. H. Greenway, R. Munns. Mechanisms of salt tolerance in non-halophytes. Annu. Rev. Plant Physiol. 31:149-190, 1980.

  23. T.J. Flowers, M.A. Hajibagheri, N. Clipson. Halophytes. Q. Rev. Biol. 61:313-337, 1986.

  24. R. Munns. Physiological processes limiting plant growth in saline soils-some dogmas and hypotheses. Plant Cell Environ. 16:15-24, 1993.

  25. R. Munns. Comparative physiology of salt and water stress. Plant Cell Environ. 25:239-250, 2002.

  26. I.A. Ungar. Ecophysiology of Vascular Halophytes. Boca Raton: CRC Press, 1991, pp. 1-209.

  27. T.J. Flowers, P.F. Troke, A.R. Yeo. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28:89-121, 1977.

  28. E.P. Glenn, J.J. Brown, E. Blumwald. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 18:227-255, 1999.

  29. K. Kreeb. Plants in saline habitats. Naturwissenschaften 61:337-343, 1974.

  30. M.A. Khan, I.A. Ungar, A.M. Showalter. The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. J. Arid Environ. 45:73-84, 2000.

  31. M.D. Williams, I.A. Ungar. The effect of environmental parameters on the germination, growth, and development of Suaeda depressa (Pursh) Wats. Am. J. Bot. 59:912-918, 1972.

  32. P.F. Brownell. Sodium as an essential micronutrient for a higher plant (Atriplex vesicaria). Plant Physiol. 40:460-468, 1965.

  33. R. Munns. Salinity, growth and phytohormones. In: A. Läuchli, U. Lüttge, eds. Salinity: Environment-Plants-Molecules. Dordrecht, Berlin, London: Kluwer Academic Publishers, 2002, pp. 271-290.

  34. J. Gorham, J. Bridges. Effects of calcium on growth and leaf ion concentrations of Gossypium hirsutum grown in saline hydroponic culture. Plant Soil 176:219-227, 1995.

  35. T. Flowers. Salt tolerance in Suaeda maritima (L.) Dum.-effects of sodium chloride on growth, respiration, and soluble enzymes in a comparative study with Pisum sativum L. J. Exp. Bot. 23:310-321, 1972.

  36. M.A. Khan, I.A. Ungar, A.M. Showalter. Effects of salinity on growth, water relations, and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Ann. Bot. 85:225-232, 2000.

  37. S.W. Breckle. Salinity, halophytes and salt-affected natural ecosystems. In: A. Läuchli, U. Lüttge, eds. Salinity: Environment-Plants-Molecules. Dordrecht, Boston, London: Kluwer Academic Publishers, 2002, pp. 53-77.

  38. J. Khan, J. Gorham. Salinity effects on 4D recombinant tetraploid wheat genotypes. Pak. J. Arid Agric. 4:37-43, 2001.

  39. J. Gorham, J. Bridges, J. Dubcovsky, J. Dvorak, P.A. Hollington, M.C. Luo, J.A. Khan. Genetic analysis and physiology of a trait for enhanced K/Na discrimination in wheat. New Phytol. 137:109-116, 1997.

  40. G.V. Subbarao, R.M. Wheeler, G.W. Stutte, L.H. Levine. How far can sodium substitute for potassium in red beet? J. Plant Nutr. 22:1745-1761, 1999.

  41. G.V. Subbarao, R.M. Wheeler, G.W. Stutte, L.H. Levine. Low potassium enhances sodium uptake in red beet under moderate saline conditions. J. Plant Nutr. 23:1449-1470, 2000.

  42. G.V. Subbarao, R.M. Wheeler, G.W. Stutte. Feasibility of substituting sodium for potassium in crop plants for advanced life support systems. Life Support Biosphere Sci. 7:225-232, 2000.

  43. S. Box, D.P. Schachtman. The effect of low concentrations of sodium on potassium uptake and growth of wheat. Aust. J. Plant Physiol. 27:175-182, 2000.

  44. F.J.M. Maathuis, A. Amtmann. K nutrition and Na toxicity: the basis of cellular K/Na ratios. Ann. Bot. 84:123-133, 1999.

  45. M. Tester, R.J. Davenport. Na tolerance and Na transport in higher plants. Ann. Bot. 91:503-527, 2003.

  46. L. Reinhold, M. Guy. Function of membrane transport systems under salinity: plasma membrane. In: A. Läuchli, U. Lüttge, eds. Salinity: Environment-Plants-Molecules. Dordrecht, Berlin, London: Kluwer Academic Publishers, 2002, pp. 397-421.

  47. M. Binzel, W. Ratajczak. Function of membrane transport systems under salinity: tonoplast. In: A. Läuchli, U. Lüttge, eds. Salinity: Enviroinment-Plants-Molecules. Dordrecht, Berlin, London: Kluwer Scientific Publishers, 2002, pp. 423-449.

  48. P. Maser, M. Gierth, J.I. Schroeder. Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247:43-54, 2002.

  49. J. Schroeder, P. Buschmann, B. Eckelman, E. Kim, M. Sussman, N. Uozumi, P. Maser. Molecular mechanisms of potassium and sodium transport in plants. In: W.J. Horst, M.K. Schenk, A. Burkert, N. Claassen, H. Flessa, W.B. Frommer, H. Goldbach, H.W. Olfs, V. Römheld, eds. Developments in Plant and Soil Sciences, Vol. 92. Dordrecht: Kluwer Academic Publishers, 2001, pp. 10-11.

  50. J. Song, H. Fujiyama. Ameliorative effect of potassium on rice and tomato subjected to sodium salinization. Soil Sci Plant Nutr. 42:493-501, 1996.

  51. J. Song, H. Fujiyama. Importance of Na content and water status for growth in Na-salinized rice and tomato plants. Soil Sci. Plant Nutr. 44:197-208, 1998.

  52. S.R. Grattan, C.M. Grieve. Mineral element acquisition and growth response of plants grown in saline environments. Agric. Ecosystems Environ. 38:275-300, 1992.

  53. S.R. Grattan, C.M. Grieve. Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 78:127-157, 1999.

  54. P.C. Chiy, C.J.C. Phillips. Sodium in forage crops. In: P.C. Chiy, C.J.C. Phillips, eds. Sodium in Agriculture. Canterbury: Chalcombe Publications, 1995, pp. 43-69.

  55. G.N. Al Karaki. Growth, sodium, and potassium uptake and translocation in salt-stressed tomato. J. Plant Nutr. 23:369-379, 2000.

  56. G.R. Cramer, A. Läuchli, E. Epstein. Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root growth of cotton. Plant Physiol. 81:792-797, 1986.

  57. E. Epstein. The essential role of calcium in selective cation transport by plant cells. Plant Physiol. 36:437-444, 1961.

  58. G.R. Cramer. Sodium-calcium interactions under salinity stress. In: A. Läuchli, U. Lüttge, eds. Salinity: Environment-Plants-Molecules. Dordrecht, Berlin, London: Kluwer Academic Publishers, 2002, pp. 205-227.

  59. G.R. Cramer, A. Läuchli, V.S. Polito. Displacement of Ca2 by Na from the plasma lemma of root cells. A primary response to salt stress? Plant Physiol. 79:207-211, 1985.

  60. R.J. Davenport, R.J. Reid, F.A. Smith. Sodium-calcium interactions in two wheat species differing in salinity tolerance. Physiol. Plant 99:323-327, 1997.

  61. O.E. Elzam. Interactions between sodium, potassium and calcium in their absorption by intact barley plants. Recent Advances in Plant Nutrition, Vol. 2. New York: Gordon and Breach Scientific Publishers, 1971, pp. 491-507.

  62. L.M. Kent, A. Läuchli. Germination and seedling growth of cotton: salinity-calcium interactions. Plant Cell Environ. 8:155-159, 1985.

  63. J. Lynch, G.R. Cramer, A. Läuchli. Salinity reduces membrane-associated calcium in corn root protoplasts. Plant Physiol. 83:390-394, 1987.

  64. J. Song, H. Fujiyama. Difference in response of rice and tomato subjected to sodium salinization to the addition of calcium. Soil Sci. Plant Nutr. 42:503-510, 1996.

  65. Z. Rengel. The role of calcium in salt toxicity. Plant Cell Environ. 15:625-632, 1992.

  66. T.B. Kinraide. Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol. 118:513-520, 1998.

  67. T.B. Kinraide. Interactions among Ca2, Na2, and K in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects. J. Exp. Bot. 50:1495-1505, 1999.

  68. D. Chandramony, M.K. George. Nutritional effects of calcium, magnesium, silica, and sodium chloride on certain anatomical characters of rice plant related to lodging. Agric. Res. J. Kerala 13:39-42, 1975.

  69. Y. Liang, R. Ding, Q. Liu. Effects of silicon on salt tolerance of barley and its mechanism. Sci. Agric. Sin. 32:75-83, 1999.

  70. Y. Liang, Q. Shen, Z. Shen, T. Ma. Effects of silicon on salinity tolerance of two barley cultivars. J. Plant Nutr. 19:173-183, 1996.

  71. Y. Liang, Q. Shen, A. Zhang, Z. Shen. Effect of calcium and silicon on growth of and nutrient uptake by wheat under stress of acid rain. Chin. J. Appl. Ecol. 10:589-592, 1999.

  72. O.F. Lima Filho, M.T.G. Lima, S. Tsai. Silicon in Agriculture. Informacoes Agronomicas Technical Supplement, 1-7, 1999.

  73. T. Matoh, P. Kairusmee, E. Takahashi. Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci. Plant Nutr. 32:295-304, 1986.

  74. J. Wooley. Sodium and silicon as nutrients for the tomato plant. Plant Physiol. 1:317-321, 1957.

  75. A.R. Yeo, S.A. Flowers, G. Rao, K. Welfare, N. Senanayake, T.J. Flowers. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ. 22:559-565, 1999.

  76. X. Liu, Y. Yang, W. Li, D. Duan, T. Tadano. Interactive effects of sodium chloride and nitrogen on growth and ion accumulation of a halophyte. Commun. Soil Sci. Plant Anal. 35:2111-2123, 2004.

  77. J. Gorham, R.G. Wyn Jones. Solute distribution in Suaeda maritima. Planta 157:344-349, 1983.

  78. R. Storey, R.G. Wyn Jones. Quaternary ammonium compounds in plants in relation to salt resistance. Phytochemistry 16:447-453, 1977.

  79. R. Storey, N. Ahmad, R.G. Wyn Jones. Taxonomic and ecological aspects of the distribution of glycinebetaine and related compounds in plants. Oecologia 27:319-332, 1977.

  80. J. Guil, I. Rodriguez-Garcia, E. Torija. Nutritional and toxic factors in selected wild edible plants. Plant Foods Hum. Nutr. 51:99-107, 1997.

  81. A. Cavalieri. Proline and glycinebetaine accumulation by Spartina alterniflora Loisel. in response to NaCl and nitrogen in a controlled environment. Oecologia 57:24-1983.

  82. A. Cavalieri, A. Huang. Accumulation of proline and glycinebetaine in Spartina alterniflora Loisel. in response to NaCl and nitrogen in the marsh. Oecologia 49:224-228, 1981.

  83. T.D. Colmer, T.W.M. Fan, A. Läuchli, R.M. Higashi. Interactive effects of salinity, nitrogen, and sulphur on the organic solutes in Spartina alterniflora leaf blades. J. Exp. Bot. 47:369-375, 1996.

  84. M.G. Khan, M. Silberbush, S.H. Lips. Effect of nitrogen nutrition on growth and mineral status of alfalfa plants in saline conditions. Indian J. Plant Physiol. 2:279-283, 1997.

  85. M.G. Khan, M. Silberbush, S.H. Lips. Responses of alfalfa to potassium, calcium, and nitrogen under stress induced by sodium chloride. Biologia Plantarum 40:251-259, 1998.

  86. M.G. Khan, H.S. Srivastava. Nitrate application improves plant growth and nitrate reductase activity in maize under saline conditions. Indian J. Plant Physiol. 5:154-158, 2000.

  87. H. Jaenicke, H.S. Lips, W.R. Ullrich. Growth, ion distribution, potassium and nitrate uptake of Leucaena leucocephala, and effects of NaCl. Plant Physiol. Biochem. 34:743-751, 1996.

  88. E.O. Leidi, R. Nogales, S.H. Lips. Effect of salinity on cotton plants grown under nitrate or ammonium nutrition at different calcium levels. Field Crops Res. 26:35-44, 1991.

  89. E.O. Leidi, M. Silberbush, S.H. Lips. Wheat growth as affected by nitrogen type, pH and salinity. I. Biomass production and mineral composition. J. Plant Nutr. 14:235-246, 1991.

  90. E.O. Leidi, M. Silberbush, S.H. Lips. Wheat growth as affected by nitrogen type, pH, and salinity. II. Photosynthesis and transpiration. J. Plant Nutr. 14:247-256, 1991.

  91. E.O. Leidi, M. Silberbush, M.I.M. Soares, S.H. Lips. Salinity and nitrogen nutrition studies on peanut and cotton plants. J. Plant Nutr. 15:591-604, 1992.

  92. M. Sagi, A. Dovrat, T. Kipnis, H. Lips. Nitrate reductase, phosphoenolpyruvate carboxylase, and glutamine synthetase in annual ryegrass as affected by salinity and nitrogen. J. Plant Nutr. 21:707-723, 1998.

  93. M. Sagi, A. Dovrat, T. Kipnis, H. Lips. Ionic balance, biomass production, and organic nitrogen as affected by salinity and nitrogen source in annual ryegrass. J. Plant Nutr. 20:1291-1316, 1997.

  94. M. Silberbush, S.H. Lips. Potassium, nitrogen, ammonium/nitrate ratio, and sodium chloride effects on wheat growth. I. Shoot and root growth and mineral composition. J. Plant Nutr. 14:751-764, 1991.

  95. W.R. Ullrich. Salinity and nitrogen nutrition. In: A. Läuchli, U. Lüttge, eds. Salinity: Environment- Plants-Molecules. Dordrecht, Boston, London: Kluwer Academic Publishers, 2002, pp. 229-248.

  96. C. Engels, E.A. Kirkby. Cycling of nitrogen and potassium between shoot and roots in maize as affected by shoot and root growth. J. Plant Nutr. Soil Sci. 164:183-191, 2001.

  97. H. Marschner, E.A. Kirkby, C. Engels. Importance of cycling and recycling of mineral nutrients within plants for growth and development. Botanica Acta 110:265-273, 1997.

  98. B.G. Forde. Local and long-range signalling pathways regulating plant responses to nitrate. Annu. Rev. Plant Biol. 53:203-224, 2002.

  99. J.A. Memon. Interaction Between Salinity and Nutrients in Cotton. Ph.D. dissertation, University of Wales, Bangor, U.K., 1999.

  100. G.N. Al Karaki. Barley response to salt stress at varied levels of phosphorus. J. Plant Nutr. 20:1635-1643, 1997.

  101. P. Harmer, E. Benne. Sodium as a crop nutrient. Soil Sci. Soc. Am. J. 60:137-148, 1945.

  102. W.E. Larson, W. Pierre. Interaction of sodium and potassium on yield and cation composition of selected crops. Soil Sci. Soc. Am. J. 76:51-64, 1953.

  103. J. Lehr. Sodium as a plant nutrient. J. Sci. Food Agric. 4:460-471, 1953.

  104. J. Lehr. The importance of sodium for plant nutrition. Soil Sci. 63:479, 1947.

  105. C.R.S. Devi, P. Padmaja. Effects of partial substitution of muriate of potash by common salt on the tuber quality parameters of cassava. J. Root Crops 22:23-27, 1996.

  106. C.R.S. Devi, P. Padmaja. Effect of K and Na applied in different proportions on the growth, yield, and nutrient content of cassava (Manihot esculenta Crantz.). J. Indian Soc. Soil Sci. 47:84-89, 1999.

  107. E. Troug, K. Berger, O. Attoe. Response of nine economic plants to fertilization with sodium. Soil Sci. Soc. Am. J. 76:41-50, 1953.

  108. A.P. Draycott. Sugar-Beet Nutrition. London, UK: Applied Science Publishers Ltd., 1972, 250 pp.

  109. A.P. Draycott, S. Bugg. Response by sugar beet to various amounts and times of application of sodium chloride fertilizer in relation to soil types. J. Agric. Sci. 98:579-592, 1982.

  110. A.P. Draycott, M.J. Durrant. Response by sugar beet to potassium and sodium fertilizers, particularly in relation to soils containing little exchangeable potassium. J. Agric. Sci. 87:105-112, 1976.

  111. A.P. Draycott, M.J. Durrant, A.B. Messem. Effects of plant density, irrigation, and potassium and sodium fertilizers on sugar beet. 2. Influence of soil moisture and weather. J. Agric. Sci. 82:261-268, 1974.

  112. A.P. Draycott, J. Marsh, P.B. Tinker. Sodium and potassium relationships in sugar beet. J. Agric. Sci. 74:568-573, 1970.

  113. M.J. Durrant, A.P. Draycott, G.F.J. Milford. Effect of sodium fertilizer on water status and yield of sugar beet. Ann. Appl. Biol. 88:321-328, 1978.

  114. A. El-Sheikh, A. Ulrich, T. Broyer. Sodium and rubidium as possible nutrients for sugar beet plants. Plant Physiol. 42:1202-1208, 1967.

  115. S. Haneklaus, L. Knudsen, E. Schnug. Relationship between potassium and sodium in sugar beet. Commun. Soil Sci. Plant Anal. 29:1793-1798, 1998.

  116. S. Haneklaus, E. Schnug. Evaluation of critical values of soil and plant nutrient concentrations of sugar beet by means of boundary lines applied to a large dataset from production fields. Aspects Appl. Biol. 52:87-93, 1998.

  117. S. Haneklaus, E. Schnug, L. Knudsen. Minimum factors for the mineral nutrition of field-grown sugar beet in northern Germany and eastern Denmark. Aspects Appl. Biol. 52:57-64, 1998.

  118. G. Judel, H. Kuhn. Uber die Wirkung einer Natriumdungung zu Zuckerruben bei guter Versogung mit Kalium in Gefabversuchen. Zuckerindustrie 28:68-71, 1975.

  119. S.S. Magat, K.M. Goh. Effect of chloride fertilizers on ionic composition and cation-anion balance and ratio of fodder beet (Beta vulgaris L.) grown under field conditions. N. Z. J. Agric. Res. 33:29-40, 1990.

  120. C.I. Bell, J. Jones, G.F.J. Milford, R.A. Leigh. The effects of crop nutrition on sugar beet quality. Aspects Appl. Biol 32:19-26, 1992.

  121. D.W. Lawlor, G.F.J. Milford. The effect of sodium on growth of water-stressed sugar beet. Ann. Bot. 37:597-604, 1973.

  122. G.F.J. Milford,W.F. Cormack, M.J. Durrant. Effects of sodium chloride on water status and growth of sugar beet. J. Exp. Bot. 28:1380-1388, 1977.

  123. M. Nunes, M. Dias, M. Correia, M. Oliveira. Further studies on growth and osmoregulation of sugar beet leaves under low-salinity conditions. J. Exp. Bot. 35:322-331, 1984.

  124. N.H. Peck, J.P. Van Burren, G.E. MacDonald, M. Hemmat, R.F. Becker. Table beet plant and canned root responses to Na, K, and Cl from soils and from application of NaCl and KCl. J. Am. Soc. Hortic. Sci. 112:188-194, 1987.

  125. P.B. Tinker. The effects of nitrogen, potassium, and sodium fertilizers on sugar beet. J. Agric. Sci. 65:207-212, 1965.

  126. M.C. Williams. Effect of sodium and potassium salts on growth and oxalate content of Halogeton. Plant Physiol. 35:500-509, 1960.

  127. J. Lehr, J. Wybenga. Exploratory pot experiments on sensitiveness of different crops to sodium. Plant Soil 3:251-261, 1955.

  128. D.D. Warncke, T.C. Reid, M.K. Hausbeck. Sodium chloride and lime effects on soil cations and elemental composition of asparagus fern. Commun. Soil Sci. Plant Anal. 33:3075-3084, 2002.

  129. D.C. Edmeades, M.B. O'Connor. Sodium requirements for temperate pastures in New Zealand: a review. N. Z. J. Agric. Res. 46:37-47, 2003.

  130. C.J.C. Phillips, P.C. Chiy. Sodium in Agriculture. Canterbury: Chalcombe Publications, 1995, pp. 1-217.

  131. G.S. Smith, K.R. Middleton. Sodium and potassium content of top-dressed pastures in New Zealand in relation to plant and animal nutrition. N. Z. J. Exp. Agric. 6:217-225, 1978.

  132. G.N. Mundy. Effects of potassium and sodium application to soil on growth and cation accumulation of herbage. Aust. J. Agric. Res. 35:85-97, 1984.

  133. G.N. Mundy. Effects of potassium and sodium concentrations on growth and cation accumulation in pasture species grown in sand culture. Aust. J. Agric. Res. 34:469-481, 1983.

  134. A.H. Sinclair, D.C. Macdonald, R. Ferrier, A.C. Edwards. The use of minor nutrients for grassland. In: Forward with Grass into Europe. Proceedings of the British Grassland Society Winter meeting, 1992. Reading: British Grassland Society, 1993, pp. 73-84.

  135. A. Cushnahan, J.S. Bailey, F.J. Gordon. Some effects of sodium application on the yield and chemical composition of pasture grown under differing conditions of potassium and moisture supply. Plant Soil 176:117-127, 1995.

  136. W.O. Boberfeld, M. Schlosser, H. Laser. Effect of Na amounts on forage quality and feed consumption on Lolium perenne depending on fertilizer and nutrient ratio. Agribiol. Res. 52:261-270, 1999.

  137. P.C. Chiy, A. Al-Tulihan, M.H. Hassan, C.J.C. Phillips. Effects of sodium and potassium fertilizers on the composition of herbage and its acceptability to dairy cows. J. Sci. Food Agric. 76:289-297, 1998.

  138. P.C. Chiy, C.J.C. Phillips. Sodium fertilizer application to pasture. 8. Turnover and defoliation of leaf tissue. Grass Forage Sci. 54:297-311, 1999.

  139. P.C. Chiy, C.J.C. Phillips. Sodium fertilizer application to parture. 6. Effects of combined application with sulfur on herbage production and chemical composition in the season of application. Grass Forage Sci. 53:1-10, 1998.

  140. P.C. Chiy, C.J.C. Phillips. Effects of sodium fertiliser on the chemical composition of grass and clover leaves, stems, and inflorescences. J. Sci. Food Agric. 72:501-510, 1996.

  141. T.S. Boag, P.F. Brownell. C4 photosynthesis in sodium-deficient plants. Aust. J. Plant Physiol. 6:431-434, 1979.

  142. P.F. Brownell. Sodium as an essential micronutrient element for plants and its possible role in metabolism. Adv. Bot. Res. 7:117-224, 1979.

  143. P.F. Brownell, J. Wood. Sodium as an essential micronutrient element for Atriplex vesicaria. Nature 179:365-366, 1957.

  144. T. Matoh, D. Ohta, E. Takahashi. Effect of sodium application on growth of Amaranthus tricolor L. Plant Cell Physiol. 27:187-192, 1986.

  145. D. Ohta, T. Matoh, E. Takahashi. Early responses of sodium-deficient Amaranthus tricolor L. plants to sodium application. Plant Physiol. 84:112-117, 1987.

  146. D. Ohta, S. Yasuoka, T. Matoh, E. Takahashi. Sodium stimulates growth of Amaranthus tricolor L. plants through enhanced nitrate assimilation. Plant Physiol. 89:1102-1105, 1989.

  147. T. Matoh, S. Murata. Sodium stimulates growth of Panicum coloratum through enhanced photosynthesis. Plant Physiol. 92:1169-1173, 1990.

  148. S. Murata, J. Sekiya. Effects of sodium on photosynthesis in Panicum coloratum. Plant Cell Physiol. 33:1239-1242, 1992.

  149. H. Ball, J. O'Leary. Effects of salinity on growth and cation accumulation of Sporobolus virginicus (Poaceae). Am. J. Bot. 90:1416-1424, 2003.

  150. K.B. Marcum, C.L. Murdoch. Salt tolerance of the coastal salt marsh grass, Sporobolus virginicus (L.) Kunth. New Phytol. 120:281-288, 1992.

  151. K. Hunter, L. Wu. Morphological and physiological response of five California native grass species to moderate salt spray: implications for landscape irrigation with reclaimed water. J. Plant Nutr. 28:247-270, 2005.

  152. P.F. Brownell, L.M. Bielig, C.P.L. Grof. Increased carbonic anhydrase activity in leaves of sodiumdeficient C4 plants. Aust. J. Plant Physiol. 18:589-592, 1991.

  153. P.F. Brownell, C.J. Crossland. The requirement for sodium as a micronutrient by species having the C4 dicarboxylic photosynthetic pathway. Plant Physiol. 49:794-797, 1972.

  154. P.F. Brownell, M. Jackman. Changes during recovery from sodium deficiency in Atriplex. Plant Physiol. 41:617-622, 2005.

  155. C.P.L. Grof, M. Johnston, P.F. Brownell. Free amino acid concentrations in leaves of sodium-deficient C4 plants. Aust. J. Plant Physiol. 13:343-346, 1986.

  156. C.P.L. Grof, M. Johnston, P.F. Brownell. Effect of sodium nutrition on the ultrastructure of chloroplasts of C4 plants. Plant Physiol. 89:539-543, 1989.

  157. C.P.L. Grof, D.B.C. Richards, M. Johnston, P.F. Brownell. Characterisation of leaf fluorescence of sodium-deficient C4 plants: kinetics of emissions from whole leaves and fluorescence properties of isolated thylakoids. Aust. J. Plant Physiol. 16:459-468, 1989.

  158. P.F. Brownell, L.M. Bielig. The role of sodium in the conversion of pyruvate to phosphoenolpyruvate in mesophyll chloroplasts of C4 plants. Aust. J. Plant Physiol. 23:171-177, 1996.

  159. M. Johnston, C.P.L. Grof, P.F. Brownell. The effect of sodium nutrition on the pool sizes of intermediates of the C4 photosynthetic pathway. Aust. J. Plant Physiol. 15:749-760, 1988.

  160. N. Aoki, J. Ohnishi, R. Kanai. Two different mechanisms for transport of pyruvate into mesophyll chloroplasts of C4 plants-a comparative study. Plant Cell Physiol. 33:805-809, 1992.

  161. J. Ohnishi, U.I. Flugge, H.W. Heldt, R. Kanai. Involvement of Na in active uptake of pyruvate in mesophyll chloroplasts of some C4 plants. Na/pyruvate cotransport. Plant Physiol. 94:950-959, 1990.

  162. J. Ohnishi, R. Kanai. Na-induced uptake of pyruvate into mesophyll chloroplasts of a C4 plant, Panicum miliaceum. FEBS Lett. 219:347-350, 1987.

  163. N. Aoki, R. Kanai. Reappraisal of the role of sodium in the light-dependent active transport of pyruvate into mesophyll chloroplasts of C4 plants. Plant Cell Physiol. 38:1217-1225, 1997.

  164. J. Monreal, R. Alvarez, J. Vidal, C. Echevarria. Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation. Planta 216:648-655, 2003.

  165. A. Rajagopalan, R. Agarwal, A. Raghavendra. Modulation in vivo by nitrate salts of the activity and properties of phosphoenolpyruvate carboxylase in leaves of Alternanthera pungens (C4 plant) and A. sessilis (C3 species). Photosynthetica 42:345-349, 2004.

  166. P.F. Brownell, C.J. Crossland. Growth responses to sodium by Bryophyllum tubiflorum under conditions inducing crassulacean acid metabolism. Plant Physiol. 54:416-417, 1974.

  167. U. Lüttge. Peformance of plants with C4-carboxylation modes of photosynthesis under salinity. In: A. Läuchli, U. Lüttge, eds. Salinity: Environment-Plants-Molecules. Dordrecht, Berlin, London: Kluwer Academic Publishers, 2002, pp. 341-360.

  168. A.J. Bloom. Salt requirement for crassulacean acid metabolism in the annual succulent Mesembryanthemum crystallinum. Plant Physiol. 63:749-753, 1979.

  169. J. Cushman, H.J. Bohnert. Induction of crassulacean acid metbolism by salinity-molecular aspects. In: A. Läuchli, U. Lüttge, eds. Salinity: Enviroment-Plants-Molecules. Dordrecht, Berlin, London: Kluwer Academic Publishers, 2002, pp. 361-393.

  170. A. Sumer, C. Zorb, F. Yan, S. Schubert. Evidence of sodium toxicity for the vegetative growth of maize (Zea mays L.) during the first phase of salt stress. J. Appl. Bot. Food Qual. 78:135-139, 2004.

  171. R.G. Wyn Jones, C. Brady, J. Speirs. Ionic and osmotic relations in plant cells. In: D. Laidman, R.G. Wyn Jones, eds. Recent Advances in the Biochemistry of Cereals. New York: Academic Press, 1979, pp. 63-103.

  172. R.G. Wyn Jones, A. Pollard. Proteins, enzymes and inorganic ions. In: A. Läuchli, R.L. Bielski, eds. Encyclopedia of Plant Physiology, New Series 15B. Berlin: Springer, 1983, pp. 528-562.

  173. A. Pollard, R.G. Wyn Jones. Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144:291-298, 1979.

  174. T.J. Flowers. The effect of sodium chloride on enzyme activities from four halophyte species of Chenopodiaceae. Phytochemistry 11:1881-1886, 1972.

  175. T.J. Flowers, J.L. Hall, M.E. Ward. Salt tolerance in the halophyte Suaeda maritima. Further properties of the enzyme malate dehydrogenase. Phytochemistry 15:1231-1234, 1976.

  176. H. Greenway, C.B. Osmond. Salt responses of enzymes from species differing in salt tolerance. Plant Physiol. 49:256-259, 1972.

  177. R.G. Wyn Jones, R. Storey, R.A. Leigh, N. Ahmad, A. Pollard. A hypothesis on cytoplasmic osmoregulation. In: E. Marre, O. Ciferri, eds. Regulation of Cell Membrane Activities in Higher Plants. Amsterdam: Elsevier/North Holland, 1977, pp. 121-136.

  178. R.G. Wyn Jones, J. Gorham. Intra- and inter-cellular compartmentation of ions: a study in specificity and plasticity. In: A. Läuchli, U. Lüttge, eds. Salinity: Environment-Plants-Molecules. Dordrecht, Boston, London: Kluwer Academic Publishers, 2002, pp. 159-180.

  179. R.G. Wyn Jones. Cytoplasmic potassium homeostasis: review of the evidence and its implications. In: D.M. Oosterhuis, G. Berkowitz, eds. Frontiers in Potassium Nutrition: New Perspectives on the Effects of Potassium on Physiology of Plants. Saskatoon: Potash and Phosphate Institute of Canada, 1999, pp. 13-22.

  180. R. Storey, R.G. Wyn Jones. Response of Atriplez spongiosa and Suaeda monoica to salinity. Plant Physiol. 63:156-162, 1979.

  181. R.G. Wyn Jones, R. Storey. Betaines. In: L. Paleg, D. Aspinall, eds. Physiology and Biochemistry of Drought Resistance in Plants. Sydney: Academic Press, 1981, pp. 171-204.

  182. R.G. Wyn Jones, J. Gorham. Osmoregulation. In: O. Lange, P.S. Nobel, C.B. Osmond, H. Zeigler, eds. Encylopedia of Plant Physiology, New Series 12C. Berlin: Springer, 1983, pp. 35-58.

  183. D. Rhodes, A.D. Hanson. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:357-384, 1993.

  184. D. Rhodes, A. Nadolska-Orczyk, P. Rich. Salinity, osmolytes and compatible solutes. In: A. Läuchli, U. Lüttge, eds. Salinity: Environment-Plants-Molecules. Dordrecht, Boston, London: Kluwer Academic Publishers, 2002, pp. 181-204.

  185. J. Gorham. Sodium content of agricultural crops. In: C. Phillips, P.C. Chiy, eds. Sodium in Agriculture. Canterbury: Chalcombe Publications, 1995, pp. 17-32.

  186. R. Albert, H. Kinzel. Unterscheidung von Physiotypen bei Halophyten des Neusiedlerseegebietes (Österreich). Z. Pflanzenphysiol. 70:138-157, 1973.

  187. J. Gorham, Ll. Hughes, R.G. Wyn Jones. Chemical composition of salt-marsh plants from Ynys Môn (Anglesey): the concept of physiotypes. Plant Cell Environ. 3:309-318, 1980.

  188. M. Popp. Chemical composition of Australian mangroves. I. Inorganic ions and organic acids. Z Pflanzenphysiol. 113:395-409, 1984.

  189. F. Anjum. Leaf cuticular and epidermal traits and elemental status in Rhizophora species in a coastal wetland ecosystem. Phytomorphology 50:317-325, 2000.

  190. B.F. Clough. Growth and salt balance of the mangroves Avicennia marina (Forsk.) Vierh. and Rhizophora stylosa Griff. in relation to salinity. Aust. J. Plant Physiol. 11:419-430, 1984.

  191. W.J.S. Downton. Growth and osmotic relations of the mangrove Avicennia marina, as influenced by salinity. Aust. J. Plant Physiol. 9:519-528, 1982.

  192. E. Medina, A.E. Lugo, A. Novelo. Mineral content of foliar tissue of mangrove species of the Sontecomapan lagoon (Veracruz, Mexico) and its relation with salinity. Biotropica 27:317-323, 1995.

  193. M.A. Khan, I. Aziz. Salinity tolerance in some mangrove species from Pakistan. Wetlands Ecol. Manage. 9:219-223, 2001.

  194. J. Akhtar, J. Gorham, R.H. Qureshi, M. Aslam. Does tolerance of wheat to salinity and hypoxia correlate with root dehydrogenase activities or aerenchyma formation? Plant Soil 201:275-284, 1998.

  195. J. Gorham, C. Hardy. Response of Eragrostis tef to salinity and acute water shortage. J. Plant Physiol. 135:641-645, 1990.


Copyrights 2012 © | Disclaimer