Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: Plant Nutrition » Micronutrients » Copper
 
 
Please share with your friends:  
 
 

References

 
     
 
Content
The Element Copper
  Copper Chemistry
Copper in Plants
  Uptake and Metabolism
  Phytoremediation
Copper Deficiency in Plants
Copper Toxicity in Plants
Copper in the Soil
  Geological Distribution of Copper in Soils
  Copper Availability in Soils
Copper in Human and Animal Nutrition
  Dietary Sources of Copper
  Metabolism of Copper Forms
Copper and Human Health
  Copper Deficiency and Toxicity in Humans
References

  1. F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann. Advance Inorganic Chemistry, 6th ed. Hoboken, NJ: Wiley, 1999, 1376pp.

  2. A.J. Parker. Introduction: The chemistry of copper. In: J.F. Loneragan, A.D. Robson, R.D. Graham, eds. Copper in Soils and Plants. New York: Academic Press, 1981, pp. 1-22.



  3. K.B. Krauskopf. Geochemistry of micronutrients. In: J.J. Mortvedt, P.M. Giordano,W.L. Lindsay, eds. Micronutrients in Agriculture. Madison, WI.: Soil Science Society of America, 1972, pp. 7-40.

  4. D.C. Adriano. Trace Elements in the Terrestrial Environment. New York: Springer, 1986, 533pp.

  5. A.L. Sommer. Copper as an essential for plant growth. Plant Physiol. 6:339-345, 1931.

  6. C.B. Lipman, G. Mackinney. Proof of the essential nature of copper for higher green plants. Plant Physiol. 6:593-599, 1931.

  7. W. Reuther, C.K. Labanauskas. Copper. In: H.D. Chapman, ed. Diagnostic Criteria for Plants and Soils. Berkeley, CA: University of California Division of Agricultural Sciences Press, 1966, pp. 394-404.

  8. J. Delas. The toxicity of copper accumulated in soils. Agrochemica 7:258-288, 1963.

  9. A. Kabata-Pendias, H. Pendias. Trace Elements in Soils and Plants, 2nd ed. Boca Raton, FL: CRC Press, 1992.

  10. L. Roca- Pérez, P. Pérez-Bermúdez, R. Boluda. Soil characteristics, mineral nutrients, biomass, and cardenolide production in Digitalis obscura wild populations. J. Plant Nutr. 25:2015-2026, 2002.

  11. V. Chaignon, F. Bedin, P. Hinsinger. Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and calcareous soil. Plant Soil. 243:219-228, 2002.

  12. J.R. Peralta-Videa, J.L. Gardea-Torresdey, E. Gomez, K.J. Tiemann, J.G. Parsons, G. Carrillo. Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environ. Pollut. 119:291-301, 2002.

  13. V. Chaignon, D. DiMalta, P. Hinsinger. Fe-deficiency increases Cu acquisition by wheat cropped in a Cu-contaminated vineyard soil. New Phytol. 154:121-130, 2002.

  14. D. Liu, W. Jiang, W. Hou. Uptake and accumulation of copper by roots and shoots of maize. J. Environ. Sci. 13:228-232, 2001.

  15. Z. Nan, G. Cheng. Copper and zinc uptake by spring wheat (Triticum aestivum L.) and corn (Zea Mays L.) grown in Baiyin region. Bull. Environ. Contam. Toxicol. 67:83-90, 2001.

  16. G.A. Pederson, G.E. Brink, T.E. Fairbrother. Nutrient uptake in plant parts of sixteen forages fertilized with poultry litter: Nitrogen, phosphorus, potassium, copper, and zinc. Agron. J. 94:895-904, 2002.

  17. N.E. Nielsen. A transport kinetic concept for ion uptake by plants. III. Test of a concept by results from water culture and pot experiments. Plant Soil 45:659-677, 1976.



  18. M.F. Quartacci, E. Cosi, S. Meneguzzo, C. Sgherri, and F. Navari-Izzo. Uptake and translocation of copper in Brassicaceae. J. Plant Nutr. 26:1065-1083, 2003.

  19. H. Marschner. Mineral Nutrition of Higher Plant, 2nd ed. San Diego, CA: Academic Press, 1995. 889pp.

  20. T. Cheng, H.E. Allen. Prediction of uptake of copper from solution by lettuce (Lactuca sativa Romance). Environ. Toxic Chem. 20:2544-2551, 2001.

  21. Y.K. Soon, G.W. Clayton, P.J. Clarke. Content and uptake of phosphorus and copper by spring wheat: Effect of environment, genotype, and management. J. Plant Nutr. 20:925-937, 1997.

  22. Z. Xiong, Y. Li, B. Xu. Nutritional influence on copper accumulation by Brassica pekinensis Rupr. Ecotoxic Environ. Safety 53:200-205, 2002.

  23. A. Mozafar. Distribution of nutrient elements along the maize leaf: Alteration by iron deficiency. J. Plant Nutr. 20:999-1005, 1997.

  24. T. Landberg, M. Greger. Influence of selenium on uptake and toxicity of copper and cadmium in pea (Pisum sativum) and wheat (Triticum aestivum). Physiol. Plant 90:637-644, 1994.

  25. C. van Vliet, C.R. Anderson, C.S. Cobbett. Copper-sensitive mutant of Arabidopsis thaliana. Plant Physiol. 109:871-878, 1995.

  26. R.M. Welch, W.A. Norvell, S.C. Schaefer, J.E. Shaff, L.V. Kochian. Induction of iron(III) and copper(II) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: Does the root cell plasmalemma Fe(III)-chelate reductase perform a general role in regulating cation uptake? Planta 190: 555-561, 1993.

  27. E. Lesuisse, P. Labbe. Iron reduction and trans-plasma membrane electron transport in the yeast Saccharomyces cerevisiae. Plant Physiol. 100:769-777, 1992.

  28. T.H. Garmo, A. Frřslie, R. Hřie. Levels of copper, molybdenum, sulfur, zinc, selenium, iron and manganese in native pasture plants from a mountain area in southern Norway. Acta Agric. Scand. 36:147-161, 1986.

  29. P. Mantovi, G. Bonazzi, E. Maestri, N. Marmiroli. Accumulation of copper and zinc from liquid manure in agricultural soils and crop plants. Plant Soil 250:249-257, 2003.

  30. J. Kubota. Copper status of United States soils and forage plants. Agron. J. 75:913-918, 1983.

  31. M. Kaplan. Accumulation of copper in soils and leaves of tomato plants in greenhouses in Turkey. J. Plant Nutr. 22:237-244, 1999.

  32. J.M. Swiader, G.W. Ware. Producing Vegetable Crops, 5th ed. Danville, IL: Interstate Publishers, Inc., 2002, 658pp.

  33. R.F. Brennan, M.D.A. Bolland. Comparing copper requirements for faba bean, chickpea, and lentil with spring wheat. J. Plant Nutr. 26:883-899, 2003.

  34. F. Vinit-Dunand, D. Epron, B. Alaoui-Sossčm, P.-M. Badot. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Sci. 163:53-58, 2002.

  35. T.M. Reinbott, D.G. Blevins, M.K. Schon. Content of boron and other elements in main stems and branch leaves and seed of soybean. J. Plant Nutr. 20:831-842, 1997.



  36. R. Babilla-Ohlbaum, R. Ginocchio, P.H. Rodrěguez, A Cčspedes, S. Gonzŕlez, H.E. Allen, G.E. Lagos. Relationship between soil copper content and copper content of selected crop plants in central Chile. Environ. Toxic Chem. 20:2749-2757, 2001.

  37. E. Pip, C. Mesa. Cadmium, copper, and lead in two species of Artemisia (Compositae) in southern Manitoba, Canada. Bul.l Environ. Contam. Toxicol. 69:644-648, 2002.

  38. K. Bunzl, M. Trautmannsheimer, P. Schramel, W. Reifenhäuser. Availability of arsenic, copper, lead, thallium, and zinc to various vegetables grown in slag-contaminated soils. J. Environ. Qual. 30:934-939, 2001.

  39. J. Lin, W. Jiang, D. Liu. Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L.). Bioresource Tech. 86:151-155, 2003.

  40. J.J. Mortvedt. Bioavailability of micronutrients. In: ME Sumner, ed. Handbook of Soil Science. Boca Raton, Fla.: CRC Press, 2000, pp. D71-D88.

  41. D. Mengel, G. Rehm. Fundamentals of fertilizer application. In: M.E. Sumner, ed. Handbook of Soil Science. Boca Raton, FL: CRC Press, 2000, pp. D155-D174.

  42. R.E. Karamanos, G.A. Kruger, J.W.B. Stewart. Copper deficiency in cereal and oilseed crops in northern Canadian Prairie soils. Agron. J. 78:317-323, 1986.

  43. L. Dahleen. Improved plant regeneration from barley callus cultures by increased copper levels. Plant Cell Tissue Org. Cult. 43:267-269, 1995.

  44. G. Wojnarowiez, C. Jacquard, P. Devaux, R.S. Sangwan, C. Clément. Influence of copper sulfate on anther culture in barley (Hordeum vulgare L.). Plant Sci. 162:843-847, 2002.

  45. M.B. Ali, P. Vajpayee, R.D. Tripathi, U.N. Rai, S.N. Singh, S.P. Singh. Phytoremediation of lead, nickel, and copper by Salix acmophylla Boiss: Role of antioxidant enzymes and antioxidant substances. Bull. Environ. Contam. Toxicol. 70:462-469, 2003.

  46. S.P. McGrath. Phytoextraction for soil remediation. In: R.R. Brooks, ed. Plants That Hyperaccumulate Heavy Metals. Oxon, U.K.: CAB International, 1998, pp. 261-287.

  47. R.R. Brooks. Phytochemistry of hyperaccumlators. In: R.R. Brooks, ed. Plants That Hyperaccumulate Heavy Metals. Oxon, U.K.: CAB International, 1998, pp.15-53.

  48. R.R. Brooks. Geobotany and hyperaccumlators. In: R.R. Brooks, ed. Plants That Hyperaccumulate Heavy Metals. Oxon, U.K.: CAB International, 1998, pp. 55-94.

  49. R.S. Morrison, R.R. Brooks, R.D. Reeves, F. Malaisse. Copper and cobalt uptake by metallophytes from Zaire. Plant Soil 53:535-539, 1979.

  50. F. Itanna, B. Coulman. Phyto-extraction of copper, iron, manganese, and zinc from environmentally contaminated sites in Ethiopia, with three grass species. Commun. Soil Sci. Plant Anal. 34:111-124, 2003.

  51. E. Grill, E.-L. Winnacker, M.H .Zenk. Phytochelatins: The principle heavy-metal complexing peptides of higher plants. Science 230:674-676, 1985.

  52. E. Grill, E.-L. Winnacker, M.H. Zenk. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc. Natl. Acad. Sci. 84:439-443, 1987.

  53. W.E. Rauser. Structure and function of metal chelators produced by plants: The case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem. Biophys. 31:19-48, 1999.

  54. D.E. Salt, D.A. Thurman, A.B. Tomsett, A.K. Sewell. Copper phytochelatins of Mimulus guttatus. Proc. R. Soc. Lond. B 236:79-89, 1989.

  55. M.J. Yang, X.E. Yang, V. Römheld. Growth and nutrient composition of Elsholtzia splendens Nakai under copper toxicity. J. Plant Nutr. 25:1359-1375, 2002.

  56. J.R. Peralta, J.L. Gardea-Torresdey, K.J. Tiemann, E. Gomez, S. Arteaga, E. Rascon, J.G. Parsons. Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull. Environ. Contam. Toxicol. 66:727-734, 2001.

  57. A. Reilly, C. Reilly. Zinc, lead, and copper tolerance in the grass Stereochlaena cameronii (Stapf) Clayton. New Phytol. 72:1041-1046, 1973.

  58. A.J. Pollard, K.D. Powell, F.A. Harper, J.A.C. Smith. The genetic basis of metal hyperaccumulation in plants. Critical Rev. Plant Sci. 21:539-566, 2002.

  59. W.S. Shu, Z.H. Ye, C.Y. Lan, Z.Q. Zhang, M.H. Wong. Lead, zinc, and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ. Pollut. 120:445-453, 2002.

  60. L. Wu, A.L. Kruckeberg. Copper tolerance in two legume species from a copper mine habitat. New Phytol. 99:565-570, 1985.

  61. M.W. Paschke, E.F. Redente. Copper toxicity thresholds for important restoration grass species of the western United States. Environ. Toxic Chem. 21:2692-2697, 2002.

  62. M.O. Torres, A. DeVarennes. Remediation of a sandy soil artificially contaminated with copper using a polyacrylate polymer. Soil Use Mgt. 14:106-110, 1998.

  63. C.D. Walker, J. Webb. Copper in plants: Forms and behaviour. In: J.F. Loneragan, A.D. Robson, R.D. Graham, eds. Copper in Soils and Plants. New York: Academic Press, 1981, pp. 198-212.

  64. M.D. Harrison, C.E. Jones, C.T. Dameron. Copper chaperones: Function, structure and copperbinding properties. JBIC 4:145-153, 1999.

  65. Q. Yu, Z. Rengel. Micronutrient deficiency influences plant groth and activities of superoxide dismutases in narrow-leaf lupins. Ann. Bot. 83:175-182, 1999.

  66. W. Bussler. Physiological functions and utilization of copper. In: J.F. Loneragan, A.D. Robson, R.D. Graham, eds. Copper in Soils and Plants. New York: Academic Press, 1981, pp. 213-234.

  67. H. Küpper, I. Setlík, M. Spiller, F.C. Küpper, O. Prásil. Heavy metal-induced inhibition of photosynthesis: Targets of in vivo heavy metal chlorophyll formation. J. Phycol. 38:429-441, 2002.

  68. E.C. Large. The Advance of the Fungi. New York: Holt, 1940. 488pp.

  69. J. Kubota, W.H. Allaway. Geographic distribution of trace element problems. In: J.J. Mortvedt, P.M. Giordano, W.L. Lindsay, eds. Micronutrients in Agriculture, Madison, WI: Soil Science Society of America, 1972, pp. 525-554.

  70. G.W. Ware, D.M. Whitacre. The Pesticide Book, 6th ed. Willoughby, OH: MeisterPro Information Resources, 2004, 487pp.

  71. E. Semu, B.R. Singh. Accumulation of heavy metals in soils and plants after long-term use of fertilizers and fungicides in Tanzania. Fert. Res. 44: 241-248, 1996.

  72. M.H. Wong, A.D. Bradshaw. A comparison of the toxicity of heavy metals, using root elongation of rye grass, Lolium perenne. New Phytol. 91:255-261, 1982.

  73. G. Ouzounidou, I. Illias, H. Tranopoulou, S. Karataglis. Amelioration of copper toxicity by iron on spinach physiology. J. Plant Nutr. 21:2089-2101, 1998.

  74. H.W. Woolhouse, S. Walker. The physiological basis of copper toxicity and copper tolerance in higher plants. In: J.F. Loneragan, A.D. Robson, R.D. Graham, eds. Copper in Soils and Plants. New York: Academic Press, 1981, pp. 235-262.

  75. G. Sandman, P. Boger. Copper-mediated lipid-peroxidation processes in photosynthetic membranes. Plant Physiol. 66:797-800, 1980.

  76. C.R. Caldwell. Effect of elevated copper on the ultraviolet light-absorbing compounds of cucumber cotyledon and leaf tissues. J. Plant Nutr. 24:283-295, 2001.

  77. M. Miyazawa, S.M.N. Giminez, M. Josefa, S. Yabe, E.L. Oliveira, M.Y. Kamogawa. Absorption and toxicity of copper and zinc in bean plants cultivated in soil treated with chicken manure. Water Air Soil Pollut. 138:211-222, 2002.

  78. A. Vassilev, F.C. Lidon, M. do Céu Matos, J.C. Ramalho, I. Yordanov. Photosynthetic performance and content of some nutrients in cadmium- and copper-treated barley plants. J. Plant Nutr. 25:2343-2360, 2002.



  79. H. Panou-Filotheou, A.M. Bosabalidis, S. Karataglis. Effects of copper toxicity on leaves of oregano (Origanum vulgare subsp. hirtum). Ann. Bot. 88:207-214, 2001.

  80. K. Burda, J. Kruk, K. Strzalka, G.H. Schmid. Stimulation of oxygen evolution in photosystm II by copper(II) ions. Z Naturforsch 57:853-857, 2002.

  81. C. Jegerschöld, J.B. Arellano,W.P. Schröder, P.J. van Kan, M. Barón, S. Styring. Copper(II) inhibition of electron transfer through photosystem II studied by EPR spectroscopy. Biochemistry 34:12747-12754, 1995.

  82. C. Jegerschöld, F. McMillan, WLubitz, A.W. Rutherford. Effect of copper and zinc ions on photosystem II. Studies by EPR spectroscopy. Biochemistry 38:12439-12445, 1999.

  83. I. Yruela, G. Gatzen, R. Picorel, A.R. Holzwarth. Cu(II)-inhibitory effect on photosystem II from higher plants. A picosecond time-resolved fluorescence study. Biochemistry 35:9469-9474, 1996.

  84. D.P. Singh, S.P. Singh. Action of heavy metals on Hill activity and O2 evolution. Plant Physiol. 83:12-14, 1987.

  85. N. Mohanty, I. Vass, S. Demeter. Copper toxicity affects photosystem II electron transport at the secondary quinone accpetor (QB). Plant Physiol. 90:175-179, 1989.

  86. W.P. Schröder, J.B. Arellano, T. Bittner, M. Barón, H.J. Eckert, G. Renger. Flash induced absorption spectroscopy studies of copper interaction with photosystem II in higher plants. J. Biol. Chem. 269:32856-32870, 1994.

  87. J.B. Arellano, J.J. Lazaro, J. Lopez-Gorge, M. Baron. The donor side of photosystem II as the copperinhibitory binding site. Photosynth. Res. 45:127-134, 1885.

  88. B.T. Brown, B.M. Rattigan. Toxiciy of soluble copper and other metals to Elodea canadensis. Environ. Pollut. 20:303-314, 1979.

  89. T.K. Mal, P. Adorjan, A.L. Corbett. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis. Environ Pollut. 120:307-311, 2002.

  90. M. Burzynski, E. Kolano. In vivo and in vitro effects of copper and cadmium on the plasma membrane H-ATPase from cucumber (Cucumis sativus L.) and maize (Zea mays L.) roots. Acta Physiol. Plant 25:39-45, 2003.

  91. Z. Shen, F. Zhang, F. Zhang. Toxicity of copper and zinc in seedlings of mung bean and introducing accumulation of polyamine. J. Plant Nutr. 21:1153-1162, 1998.

  92. C. Sgherri, M.F. Quartacci, R. Izzo, F. Navari-Izzo. Relation between lipoic acid and cell redox status in wheat grown in excess copper. Plant Physiol. Biochem. 40:591-597, 2002.

  93. N.K. Fageria. Adequate and toxic levels of copper and manganese in upland rice, common bean, corn, soybean, and wheat grown on an oxisol. Commun. Soil Sci. Plant Anal. 32:1659-1676, 2001.

  94. E.-L. Chen,Y.-A. Chen, L.-M. Chen, Z.-H. Liu. Effect of copper on peroxidase activity and lignin content if Raphanus sativus. Plant Physiol. Biochem. 40:429-444, 2002.

  95. D.R. Parker, J.F. Pedler, Z.A.S. Ahnstrom, M. Resketo. Reevaluating the free-ion activity model of trace metal toxicity toward higher plants: Experimental evidence with copper and zinc. Environ. Toxic Chem. 20:899-906, 2001.

  96. M.B. McBride. Forms and distribution of copper in solid and solution phases of soil. In: J.F. Loneragan, A.D. Robson, R.D. Graham, eds. Copper in Soils and Plants. New York: Academic Press, 1981, pp. 25-45.

  97. S.A. Barber. Soil Nutrient Bioavailability, 2nd ed. New York: Wiley, 1995, 398pp.

  98. D.E. Baker, M.C. Amacher. Nickel, copper, zinc, and cadmium. In: A.L. Page, ed. Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, 2nd ed., Agronomy 9. Madison, WI: American Society of Agronomy, 1982, pp. 323-336.

  99. M. Soumarč, F.M.G. Tack, M.G. Verloo. Distribution and availability of iron, manganese, zinc, and copper in four tropical agricultural soils. Comm. Soil Sci. Plant Anal. 34:1023-1038, 2003.

  100. W.L. Lindsay. Chemical Equilibria in Soils, 2nd ed. Caldwell, NJ: Blackburn Press, 2001, 449 pp.

  101. Z. Wang, X. Shan, S. Zhang. Effects of exogenous rare earth elements of fractions of heavy metals in soils and bioaccumulation by plants. Commun. Soil Sci. Plant Anal. 34:1573-1588, 2003.

  102. R. Rupa, L.M. Shukla. Comparison of four extractants and chemical fractions for assessing available zinc and copper in soils in India. Commun. Soil Sci. Plant Anal. 302579-2591, 1999.

  103. R.P. Narwal, B.R. Singh, B. Salbu. Association of cadmium, zinc, copper, and nickel with components in naturally heavy metal-rich soils studied by parallel and sequential extractions. Commun. Soil Sci. Plant Anal. 30:1209-1230, 1999.

  104. B. Freedman, T.C. Hutchinson. Pollutants inputs from the atmosphere and accumulation in soils and vegetation near a nickel-copper smelter at Sudbury, Ontario, Canada. Can. J. Bot. 58:108-132, 1980.

  105. S. Yu, Z.L. He, C.Y. Huang, G.C. Chen, D.V. Calvert. Adsorption-desorption behavior of copper at contaminated levels in red soils from China. J. Environ. Qual. 31:1129-1136, 2002.

  106. N. Bolan, D. Adriano, S. Mani, A. Khan. Adsorption, complexation, and phytoavailability of copper as influenced by organic manure. Environ. Toxic Chem. 22450-456, 2003.

  107. A. Olayinka, G.O. Babalola. Effects of copper sulfate application on microbial numbers and respiration, nitritier and urease activities, and nitrogen and phosphorus mineralization in an alfisol. Biol. Agric. Hort. 19:1-8, 2001.

  108. J.R. Sanders, C. Bloomfield. The influence of pH, ionic strength, and reactant concentration on copper complexing by humified organic matter. J. Soil Sci. 31:53-63, 1980.

  109. B.G. Ellis, B.D. Knezek. Adsorption reactions of micronutrients in soils. In: J.J. Mortvedt, P.M. Giordano, W.L. Lindsay, eds. Micronutrients in Agriculture. Madison, WI: Soil Science Society of America, 1972, pp. 59-78.

  110. F. Pinamonti, G. Nicolini, A. Dalpiaz, G. Stringari, G. Zorzi. Compost use in Viticulture: Effect on heavy metal levels in soil and plants. Commun. Soil Sci. Plant Anal. 30:1531-1549, 1999.

  111. D.C. Martens, D.T. Westerman. Fertilizer applications for correcting micronutrient deficiencies. In: J.J. Mortvedt, F.R. Cox, L.M. Shurman, R.M. Welch, eds. Micronutrients in Agriculture, 2nd ed. Madison, WI.: Soil Science Society of America, 1991, pp. 549-592.

  112. D.W. Franzen, M.V. McMullen. Spring Wheat Response to Copper Fertilization in North Dakota, North Dakota State University Ext Rep 50, 1999, 5pp.

  113. R.J. Haynes, R.S. Swift. Amounts and forms of micronutrient cations in a group of loessial grassland soils of New Zealand. Geoderma 33:53-62, 1984.

  114. H.A. Mills, J.B. Jones, Jr. Plant Analysis Handbook II. Athens, GA.: MicroMacro Publishing, Inc., 1996, 422pp.

  115. J.W. Gartrell. Distribution and correction of copper deficiency in crops and pastures. In: J.F. Loneragan, A.D. Robson, R.D. Graham, eds. Copper in Soils and Plants. New York: Academic Press, 1981, pp. 313-349.

  116. R.M. Davis, G. Hamilton, W.T. Lanini, T.H. Screen, C. Osteen. The Importance of Pesticides and Other Pest Management Practices in U.S. Tomato Production. Doc I-CA-98. US Dept Agric Nat Agric Pest Impact Asses Prog, Washington, DC, 1998.

  117. Y. Luo, X. Jiang, L. Wu, J. Song, S. Wu, R. Lu, P. Christie. Accumulation and chemical fractionation of Cu in a paddy soil irrigated with Cu-rich wastewater. Geoderma 115:113-120, 2003.

  118. P.J. Rice, L.L. McConnell, L.P. Heighton, A.M. Sadeghi, A.R. Isensee, J.R. Teasdale, A.A. Abdul-Baki, J.A. Harman-Fetcho, C.J. Hapeman. Comparison of copper levels in runoff from fresh-market vegetable production using polyethylene much or a vegetative mulch. Environ. Toxic Chem. 21:24-30, 2002.

  119. D.A. Moreno, G. Villora, J. Hernández, N. Castilla, L. Romero. Accumulation of Zn, Cd, Cu, and Pb in Chinese cabbage as influenced by climatic conditions under protected cultivation. J. Agric. Food Chem. 50:1964-1969, 2002.

  120. M.L. Failla, M.A. Johnson, J.R. Prohaska. Copper. In: B.A. Bowman, R.M. Russell, eds. Present Knowledge in Nutrition, 8th ed. Washington, DC: ILSI Press, 2001, pp. 373-383.

  121. D.G. Lurie, J.M. Holden, A. Schubert,W.R. Wolf, N.J. Miller-Ihli. The copper content of foods based on a critical evaluation of published analytical data. J. Food Comp. Anal. 2:298-316, 1989.

  122. United States Environmental Protection Agency. The EPA Region III Risk-Based Concentration Table. Philadelphia, PA: USEPA, 1999.

  123. D.C. Blood, O.M. Radostits, J.A. Henderson. Veterinary Medicine: A Textbook of the Diseases of Cattle, Sheep, Pigs, Goats and Horses. 6th ed. London, U.K.: Bailliere Tindall, 1983, 1310pp.

  124. S.P. Wang,Y.F. Wang, Z.Y. Hu, Z.Z. Chen, J. Fleckenstein, E. Schnug. Status of iron, manganese, copper, and zinc of soils and plants and their requirements for ruminants in Inner Mongolia steppes of China. Commun. Soil Sci. Plant Anal. 34:665-670, 2003.

  125. D.M. Miller,W.P. Miller. Land application of wastes. In: M.E. Sumner, ed. Handbook of Soil Science. Boca Raton, FL.: CRC Press, 2000, pp. G217-G245.

  126. C.A. Owen. Copper Deficiency and Toxicity: Acquired and Inherited, in Plants, Animals, and Humans. Park Ridge, NJ: Noyes Publications, 1981, 189pp.

  127. L. Knobeloch, C. Shubert, J. Hayes, J. Clark, C. Fitzgerald, A.Fraundorff. Gastrointestinal upsets and new copper plumbing-is there a connection? Wis. Med. J. 97:49-53, 1998.

  128. J. Linn, W. Jiang, D. Liu. Accumulation of copper by roots, hypocotyls, coteledons, and leaves of sunflower (Helianthus annuus L.). Bioresource Technol. 86:151-155, 2003.

 
     
 
 
     



     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer