Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: Molecular Biology of Plant Pathways » Enzyme Engineering
 
 
Please share with your friends:  
 
 

Genomic Analysis Suggests most Enzymes Evolve from Preexisting Enzymes

 
     
 
The determination of whole genome sequences allowed the identification of all of the gene families related by primary sequence homology within a specific organism. Figure 2.1 shows a cluster analysis of the proteins encoded by the Arabidopsis genome (Thomas Girke, University of California Riverside, personal communication). For example, of the ~27,000 individual proteins in Arabidopsis, ~80% of proteins are members of homology-related families, whereas only ~20% represent unique sequences. The distribution shows that approximately half of the genes are members of groups consisting of >11 members and that nearly one quarter of proteins belong to groups of >100 members. The larger families include large numbers of protein kinases and cytochrome P450s. This clearly illustrates that new proteins evolved one from another and that divergent evolution is a primary mechanism for achieving novel functionality.































FIGURE 2.1 Frequency distribution of protein families in Arabidopsis.
FIGURE 2.1 Frequency distribution of protein families in Arabidopsis.
 
     
 
 
     



     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer