Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: Principles of Horticulture » Plant propagation
 
 
Please share with your friends:  
 
 

Budding and grafting

 
     
 
Content
Plant propagation
  Seed propagation
  Sowing and aftercare in protected environments
  Sowing in the open
  Vegetative propagation
  Characteristics of propagation from vegetative parts
  Natural vegetative propagation
  Divisions
  Rhizomes
  Bulbs
  Artificial methods of propagation
  Cuttings
  Budding and grafting
  Tissue culture

Grafted plants are commonly used in top-fruit, grapes, roses and amenity shrubs with novel shapes and colours. Rootstocks resistant to soil-borne pests and disease are sometimes used when the desired cultivars would succumb if grown on their own roots, e.g. grapevines, tomatoes and cucumbers grown in border soils. Grafting is not usually attempted in monocotyledons, since they do not produce continuous areas of secondary cambium tissue suitable for successful graft-unions.

In top fruit, grafting is used for several reasons:
  • a grafted plant will establish more quickly than a seedling;
  • plants derived from seedlings will show different (usually inferior) qualities of fruiting compared with their commercially useful parent plants so a means of vegetative propagation is advantageous; the cultivars are, therefore, clones derived from one original parent;
  • to control the size of the tree through the choice of dwarfing rootstock (see Table 12.1), e.g. the M9 apple rootstock, causes the grafted scion cultivar to be considerably dwarfed. Reduced levels of auxin and cytokinin in the rootstock possibly, bring this about.
Fruit rootstock
Table 12.1 Fruit rootstock

There are numerous grafting methods that have been developed for particular plant species. Several principles common to all methods can be briefly mentioned. Firstly, the scion and stock should be genetically very similar. Secondly, the scion and stock will need to have been carefully cut so that their cambial components are able to come in contact. In this way, there will be a higher likelihood of callus growth (resulting from cambial contact), which quickly leads to graft establishment. Thirdly, the graft union should be sealed with grafting tape to maintain the graft contact, to prevent drying-out and to keep out disease organisms such as Botrytis. Fourthly, the buds on the stem taken as scion material should, ideally, be dormant (leafy material would quickly dry out). The rootstock should be starting active growth, and thus bring water, minerals, and nutrients to the graft area.

 
     
 
 
     



     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer