Principles of risk assessment
The basic concepts of risk assessment for genetically modified crops are similar to those applied to chemical pesticides where the risk is equal to the frequency and the hazard. For example no exposure (frequency) would equate to zero hazard. Risk assessments study both the severity and extent of the hazard or damage as well as the likelihood and frequency at which the damage will occur.
-
Risk (impact)= Frequency (exposure) × Hazard
Clearly the ideal situation would be one of zero risk. Since in reality the likelihood of risk is always greater than zero, acceptable risk levels for GM crops must be defined, as with all new technology. What is defined as acceptable is based upon cultural values and may well differ globally. Indeed the current climate of controversy surrounding GM crops signifies strong cultural differences between European and North American consumers in what is defined as acceptable levels of risk for the utilisation of GM crops.
While there are differences in the regulatory procedures controlling the development and commercialisation of GM crops in North America and Europe, both systems apply the same broad principles to assessing the safety of GM crop usage for food, animal feed and in terms of environmental impact. The first step involves thoroughly assessing the procedure for modifying the plant tissue. In the UK, for example, the Advisory Committee on Genetic Modification (ACGM) is the regulatory authority responsible for contained use evaluation; that is, the initial experimental work ‘contained’ within the laboratory or glasshouse. The risk evaluation procedure must be specific to each product. Broadly drawn conclusions, for example based on inter-species comparisons, are unacceptable. Most importantly the information requested in a risk assessment must be derived scientifically, with experiments designed to provide clear, interpretable, unequivocal and reproducible results. A recent addition to the risk-assessment procedure has occurred in the UK, in response to public pressure, where there is now a move towards assessing the societal and cultural impacts of this new technology alongside the environmental and human health risks.
- problem formulation
- risk analysis
- risk characterisation
- risk management.
Problem formulation requires that all available information concerning the plant, the trait and the experimental information is gathered in the context of the most likely hazards, such as toxicity/allergenicity. Once all the data are available, they can be analysed for characterisation of the likelihood and/or severity of the risk. In the final phase of the assessment procedure, the acceptability or otherwise of the identified risk must be determined and effective plans set out for its management. The risk assessment procedure is an iterative one and must continue throughout the use of the product, including post-market monitoring.