Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
Main Menu
Please click the main subject to get the list of sub-categories
Services offered
  Section: Microbiology Methods » Destructions of Microorganisms
Please share with your friends:  

Antimicrobial Agent Susceptibility Testing Resistance

Destructions of Microorganisms
  Chemical Antimicrobial Agents
    Antimicrobial Agent Susceptibility Testing Resistance
      Agar Disk Diffusion Method
      Broth Dilution Method Determining Minimum Inhibitory Concentration
      Bacterial Resistance to Antimicrobial Agents: Enzymatic
      Bacterial Resistance to Antimicrobial Agents: Mutation

An important function of the diagnostic microbiology laboratory is to help the physician select effective antimicrobial agents for specific therapy of infectious diseases. When a clinically significant microorganism is isolated from the patient, it is usually necessary to determine how it responds in vitro to medically useful antimicrobial agents, so that the appropriate drug can be given to the patient. Antimicrobial susceptibility testing of the isolated pathogen indicates which drugs are most likely to inhibit or destroy it in vivo.

Susceptibility testing has shown that bacteria are becoming increasingly resistant to a wide variety of antimicrobial agents. Although new antibiotics continue to be developed by pharmaceutical manufacturers, the microbes seem to quickly find ways to avoid their effects. Two important bacteria that have developed resistance to multiple antimicrobial agents are Staphylococcus aureus strains, especially those resistant to the drug methicillin and its relatives, and Enterococcus spp. resistant to vancomycin. These organisms are referred to as methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE), respectively. Methods for identifying staphylococci and enterococci are described in detail in topics Staphylococci and Streptococci, Pneumococci,
and Enterococci, but antibiotic-resistant strains of both organisms play important roles in infections acquired by hospitalized patients. The laboratory must use methods to detect this resistance so that special precautions are quickly instituted to prevent transfer of the resistant bacteria among patients.


Copyrights 2012 © | Disclaimer