Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: Plant Nutrition » Micronutrients » Nickel
 
 
Please share with your friends:  
 
 

References

 
     
 
Content
Introduction
Discovery of the Essentiality of Nickel
Physical and Chemical Properties of Nickel and Its Role in Animal and Bacterial Systems
  Nickel-Containing Enzymes and Proteins
  Essentiality and Function of Nickel in Plants
  Influence of Nickel on Crop Growth
Diagnosis of Nickel Status
  Symptoms of Deficiency and Toxicity
Concentration of Nickel in Plants
Uptake and Transport
Nickel in Soils
  Nickel Concentration in Soils
  Nickel Analysis in Soils
Nickel Fertilizers
Conclusion
References

  1. P.H. Brown, R.M. Welch, E.E. Cary. Nickel: A micronutrient essential for higher plants. Plant Physiol. 85:801-803, 1987.

  2. B.W. Wood, C.C. Reilly, A.P. Nyczepir. Mouse-ear of Pecan: A nickel deficiency. HortScience 39 (6):1238-1242, 2004.



  3. N.E. Dixon, C. Gazzola, R.L. Blakeley, B. Zerner. Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel. J. Amer. Chem. Soc. 97:4131-4133, 1975.

  4. D.I. Arnon, P.R. Stout. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol. 14:371-375, 1939.

  5. J. Gerendas, J.C. Polacco, S.K. Freyermuth, B. Sattelmacher. Significance of nickel for plant growth and metabolism. J. Plant Nutr. Soil Sci. 162:241-256, 1999.

  6. E. Epstein, A.J. Bloom. Mineral Nutrition of Plants: Principles and Perspectives. 2nd edition. Sinauer Associates, Sunderland, MA, 2004, pp. 45.

  7. F.H. Nielson. Nickel. In: E. Frieden, ed. Biochemistry of the Essential Ultratrace Elements. New York: Plenum Press, 1984, pp. 293-308.

  8. J.C. Polacco. Nitrogen metabolism in soybean tissue culture: II Urea utilization and urease synthesis requires Ni2. Plant Physiol. 59:827-830, 1977.

  9. D.L. Eskew, R.M. Welch, W.A. Norvell. Nickel: an essential micronutrient for legumes and possibly all higher plants. Science 222:621-623, 1983.

  10. D.L. Eskew, R.M. Welch,W.A. Norvell. Nickel in higher plants. Further evidence for an essential role. Plant Physiol. 76:691-693, 1984.

  11. C.D. Walker, R.D. Graham, J.T. Madison, E.E. Cary, R.M. Welch. Effects of nickel deficiency on some nitrogen metabolites in cow peas, Vigna unguiculata. Plant Physiol. 79:474-479, 1985.

  12. J. Gerendas, S.B. Sattelmacher. Significance of Ni supply for growth, urease activity and the contents of urea, amino acids and mineral nutrients of urea-grown plants. Plant Soil 190:153-162, 1997.

  13. J. Gerendas, S.B. Sattelmacher. Significance of N source (urea vs. NH4NO3) and Ni supply for growth, urease activity and nitrogen metabolism of zucchini (Cucurbita pepo convar. giromontiina). Plant Soil 196:217-222, 1997.

  14. J. Gerendas, S.B. Sattelmacher. Influence of Ni supply on growth, urease activity and nitrogen metabolites of Brassica napus grown with NH4NO3 or urea as nitrogen source. Ann. Bot. 83:65-71, 1999.

  15. P.H. Brown, R.M. Welch, E.E. Cary, R.T. Checkai. Beneficial effects of nickel on plant growth. J. Plant Nutr. 10:2125-2135, 1987.

  16. H. Marschner. Mineral Nutrition of Higher Plants, 2nd edition. London: Academic Press, 1995, pp. 364-369.

  17. M.J. Maroney. Structure/function relationships in nickel metallobiochemistry. Curr. Opin. Chem. Biol. 3:188-199, 1999.

  18. D.A. Phipps. Metals and Metabolism. Oxford: Clarendon Press, 1976, pp. 28-56.

  19. E. Frieden. Biochemistry of the Essential Ultratrace Elements. New York: Plenum Press, 1984, pp. 59-62.

  20. R. Cammack. Splitting molecular hydrogen. Nature 373:556-557, 1995.

  21. M.A. Holland, J.C. Pollacco. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol. 98:942-948, 1992.

  22. Von A. Schnegg, M. Kirchgessner. Aktivitatsanderungen von enzymem der leber und niere im nickelbzw. Eisen-Mangel. Zh. Tierphysiol.; Tierernahrg u Futtermittelkde 38:200-205, 1977.

  23. M. Anke, P. Gropel, H. Kronemann, M. Gunn. Nickel-An essential element. In: F.W. Sunderman, Jr., A. Aito, eds. Nickel in the Human Environment. Lyon: IARC Scientific Publishers, 1984, pp. 339-365.

  24. F.H. Nielson, T.J. Zimmerman, M.E. Collings, D.R. Myron. Nickel deprivation in rats: nickel-iron interactions. J. Nutr. 109:1623-1632, 1979.



  25. W.A. Roach, C. Barclay. Nickel and multiple trace deficiencies in agricultural crops. Nature 157:696, 1946.

  26. D. Mishra, M. Kar. Nickel in plant growth and metabolism. Bot. Rev. 40:395-452, 1974.

  27. R.M. Welch. The biological significance of nickel. J. Plant Nutr. 31:345-356, 1981.

  28. D. Bertrand, A. de Wolf. Nickel, a dynamic trace element for higher plants. C R Academic Sci. 265:1053-1055, 1967.

  29. S.L. Albrecht, R.J. Maier, F.J. Hanus, S.A. Russel, D.W. Emerich, H.J. Evans. Hydrogenase in Rhizobium japonicum increases nitrogen fixation by nodulated soybeans. Science 203:1255-1257, 1979.

  30. L.C. Rai, M. Raizada. Nickel-induced stimulation of growth heterocyst differentiation carbon-14 dioxide uptake and nitrogenase activity in Nostoc muscorum. New Phytol. 104:111-114, 1986.

  31. R.D. Graham, R.M. Welch, C.D. Walker. A role of nickel in the resistance of plants to rust. Proceedings of the Third Australian Agronomic Conference, Hobart Tasmania, Australia, 1985.

  32. J.C. Polacco. Is nickel a universal component of plant ureases? Plant Sci. Lett. 10:249-255, 1977.

  33. D.L. Eskew, R.M. Welch, E.E. Cary. A simple plant nutrient solution purification method for effective removal of trace metals using controlled pore glass 8-hydroxyquinoline chelation column chromatography. Plant Physiol. 76:103-105, 1982.

  34. D.L. Eskew, R.M. Welch. Nickel supplementation 1 g L1 prevents leaflet tip necrosis in soybeans grown in nutrient solutions purified using 8 hydroxy quinoline-controlled pore glass chromatography. Plant Physiol. (Supp.) 69:134, 1982.

  35. M. Kirchgessner, Von A. Schnegg. Malate dehydrogenase and glucose-6-phosphate dehydrogenase activity in livers of Ni-deficient rats. Bioinorg. Chem. 6:155-161, 1976.

  36. O. Horak. The importance of nickel in Fabaceae II. Uptake and requirement of nickel by Pisum sativum. Phyton (Horn) 25:301-307, 1985.

  37. J.C. Polacco. A soybean seed urease-null produces urease in cell culture Glycine max. Plant Physiol. 66: 1233-1240, 1981.

  38. O. Horak. The importance of nickel in Fabaceae I. Comparative studies on the content of nickel and certain other elements in vegetative parts and seeds. Phyton (Horn) 25:135-146, 1985.

  39. P.K. Das, M. Kar, D. Mishra. Nickel nutrition of plants: I. Effect of nickel and some oxidase activities during rice (Oryza sativa L.) seed germination. Zh. Pflanzenphysiol. 90:225-233, 1978.

  40. B.A.L. Nicoulaud, A.J. Bloom. Nickel supplements improve growth when foliar urea is the sole nitrogen source for tomato. J. Amer. Soc. Hortic. Sci. 123:556-559, 1998.

  41. C.-P. Witte, S.A. Tiller, M.A. Taylor, H.V. Davies. Addition of nickel to Murashige and Skoog medium in plant tissue culture activates urease and may reduce metabolic stress. Plant Cell Tissue Organ Culture 68:103-104, 2002.

  42. N.K. Khan, M. Wantanabe, Y. Wantanabe. Effect of different concentrations of urea with or without nickel on spinach (Spinacia oleraceae L.) under hydroponic culture. In: T. Ando, K. Fujita, T. Mae, S. Matsumoto, S. Mori, J. Sekiya, eds. Plant Nutrition for Sustainable Food Production and Environment. Dordrecht: Kluwer Academic Publishers, 1997, pp. 85-86.

  43. H.D. Chapman. Diagnostic Criteria for Plants and Soils. Riverside: Division of Agricultural Science, University of California, 1966.

  44. R.R. Brooks. Accumulation of nickel by terrestrial plants. In: J.O. Nriagu, ed. Nickel in the Environment. New York: Wiley, 1980, pp. 407-430.

  45. E.G. Bollard. Involvement of unusual elements in plant growth and nutrition. In: A. Lauchli, R.L. Bielski, eds. Encyclopedia of Plant Physiology, New Series, Vol. 15B, 1983, pp. 695-755.

  46. CJ Asher. Beneficial elements, functional nutrients, and possible new essential elements. In: JJ Mortvedt, ed. Micronutrients in Agriculture, 2nd edition. SSSA book series #4. Madison, WI: Soil Science Society of America, 1991, pp. 703-723.

  47. R. Gabrielli, T. Pandolfini, O. Vergnano, M.R. Palandri. Comparison of two serpentine species with different nickel tolerance strategies. Plant Soil 122:271-277, 1990.

  48. P.H. Brown, L. Dunemann, R. Schultz, H. Marschner. Influence of redox potential and plant species on the uptake of nickel and cadmium from soils. Zh. Pflanzenernahr. Bodenkd. 152:85-91, 1989.

  49. D.E. Salt, M. Blaylock, N.P.B.A. Kumar, V. Dushenkov, B.D. Ensley, I. Chet, I. Raskin. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotech. 13:468-474, 1995.

  50. F.H. Nielson, H.T. Reno, L.O. Tiffin, R.M. Welch. Nickel. In: Geochemistry and the Environmen,. Vol. II, The Relation of Other Trace Elements to Health and Disease. Washington, DC: National Academy of Science, 1977, pp. 40-53.

  51. R.D. Reeves, A.J.M. Baker, A. Borhidi, R. Berazain. Nickel hyperaccumulation in the serpentine flora of Cuba. Ann. Bot. 83:29-38, 1999.

  52. M.M. Guha, R.L. Mitchell. Trace and major element composition of the leaves of some deciduous trees. II. Seasonal changes. Plant Soil 24:90-112, 1966.

  53. B. Singh, Y.P. Dang, S.C. Mehta. Influence of nitrogen on the behavior of nickel in wheat. Plant Soil 127:213-218, 1990.

  54. R.D. Macnicol, P.H.T. Beckett. Critical tissue concentrations of potentially toxic elements. Plant Soil 85:107-129, 1985.

  55. A. Cottenie, A. Dhaese, R. Camerlynck. Plant quality response to uptake of polluting elements. Qual. Plant. 26:293-319, 1976.

  56. D.A. Cataldo, T.R. Garland, R.E. Wildung. Nickel in plants. I. Uptake kinetics using intact soybean seedlings. Plant Physiol. 62:5636-5665, 1978.

  57. L.V. Kochian. Mechanisms of micronutrient uptake and translocation in plants. In: J.J. Mortvedt, ed. Micronutrients in Agriculture, 2nd edition. SSSA book series #4. Madison, WI: Soil Science Society of America, 1991, pp. 229-296.



  58. Y. Guo, E. George, H. Marschner. Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184:195-205, 1996.

  59. U. Ahonen-Jonnarth, R.D. Finlay. Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and nonmycorrhizal Pinus sylvestris seedlings. Plant Soil 236:129-138, 2001.

  60. D.A. Cataldo, K.M. McFadden, T.R. Garland, R.E. Wildung. Organic constituents and complexation of nickel(II), iron(III), cadmium(II) and plutonium(IV) in soybean xylem exudates. Plant Physiol. 86:734-739, 1988.

  61. L.O. Tiffin. Translocation of nickel in xylem exudates of plants. Plant Physiol. 48:273-277, 1971.

  62. D.G. Barceloux. Nickel. J. Toxicol.: Clin. Toxicol. 37:239-242, 1999.

  63. R.H.M. van de Graaff, H.C. Suter, S.J. Lawes. Long-term effects of municipal sewage on soils and pastures. J. Environ. Sci. Health A 37:745-757, 2002.

  64. M.F. Hovmand. Cycling of Pb, Cd, Cu, Zn and Ni in Danish agriculture. In: S. Berglund, R.D. Davis, P.L. Hermite, eds. Utilisation of Sewage Sludge on Land: Rates of Application and Long-Term Effects of Metals. Dordrecht: D. Reidel, 1984, pp. 166-185.

  65. U. Kukier, R.L. Chaney. Amelioration of nickel phytotoxicity in muck and mineral soils. J. Environ. Qual. 30:1949-1960, 2001.

  66. D.R. Sauerbeck, A. Hein. The nickel uptake from different soils and its prediction by chemical extractions. Water Air Soil Pollut. 57-59:861-871, 1991.

  67. A.U. Haq, M.H. Miller. Prediction of available soil Zn, Cu, Mn using chemical extractants. Agron. J. 64:779-782, 1972.

  68. T. Becquer, F. Rigault, T. Jaffre. Nickel bioavailability assessed by ion exchange resin in the field. Commun. Soil Sci. Plant Anal. 33:439-450, 2002.



  69. M. Khan, J. Scullion. Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil microorganisms and their activities. Appl. Soil Ecol. 20:145-155, 2002.

  70. R.S. Boyd, M.A. Davis, M.A. Wall, K. Balkwill. Nickel defends the South African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae). Chemoecology 12:91-97, 2002.

  71. H. Kupper, E. Lombi, F.-J. Zhao, G. Wieshammer, S.P. McGrath. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J. Exp. Bot. 52:2291-2300, 2001.

  72. C. Bai, C.C. Reilly, B.W. Wood. Nickel deficiency disrupts metabolism of ureides, amino acides, and organic acids of young pecan foliage. Plant Physiol. 140:433-443, 2006.

 
     
 
 
     



     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer