References
- JEFFREY C, ‘Notes on Curcubitaceae, including a proposed new
classification of the family’. Kew Bulletin, 1962, 15: 337–371.
- ROBINSON RW, DECKER-WALTERS DS, Cucurbits, Cab International, 1997.
- TRULSON AJ, SHAHIN EA, ‘In vitro plant regeneration in the genus
Cucumis’. Plant Sci, 1986, 47: 35–43.
- KATHAL R, BHATNAGAR SP, BHOJWANI SS, ‘Regeneration of plants from leaf
explants of Cucumis melo cultivar Pusa Sharbati’. Plant Cell Rep, 1988, 7: 449–451.
- TABEI Y, KITADE S, NISHIZAWA Y, KIKUCHI N, KAYANO T, HIBI T, AKUTSU K,
‘Transgenic cucumber plants harboring a rice chitinase gene exhibit
enhanced resistance to gray mold (Botrytis cinerea)’. Plant Cell Rep,
1998, 17: 159–164.
- YADAV RC, SALEH MT, GRUMET R, ‘High frequency shoot regeneration from
leaf explants of muskmelon’. Plant Cell Tissue Organ Cult, 1996, 45:
207–214.
- FICCADENTI N, ROTINO GL, ‘Genotype and medium affect shoot
regeneration of melon’. Plant Cell Tissue Organ Cult, 1995,40: 293–295.
- DEBEAUJON I, BRANCHARD M, ‘Somatic embryogenesis in Curcubitacea’. Plant Cell Tissue Organ Cult, 1993, 34: 91–100.
- GRAY DJ, MC COLLEY DW, COMPTOM ME, ‘High-frequency somatic
embryogenesis from quiescent seed cotyledons of Cucumis melo cultivars’. J Am Soc Hort Sci, 1993, 118: 425–432.
- ORIDATE T, ATSUMI H, ITO S, ARAKI H, ‘Genetic difference in somatic
embryogenesis from seeds in melon (Cucumis melo L.)’. Plant Cell Tissue Organ Cult, 1992, 29: 27–30.
- EZURA H, AMAGAL H, YOSHIOKA K, OOSAWA K, ‘Highly frequent appearance
of tetraploidy in regenerated plants, a universal phenomenon, in the tissue
cultures of melon (Cucumis melo L.)’. Plant Sci, 1992, 85: 209–213.
- COLIJN-HOOYMANS CM, HAKKERT JC, JANSEN J, CUSTER JBM‘, Competence
for regeneration of cucumber cotyledons is restricted to specific
developmental stages’. Plant Cell Tissue Organ Cult, 1994, 39: 211–217.
- GILISSEN LJW, VAN STAVEREN MJ, CREEMERS-MOLENAAR J, VERHOEVEN HA,
‘Development of polysomaty in seedlings and plants of Cucumis sativus L.’. Plant Sci, 1993, 91: 171–179.
- GUIS M, BEN AMOR M, LATCHÉ A, PECH JC, ROUSTAN JP, ‘A reliable system
for the transformation of cantaloupe charentais melon (Cucumis melo L.
var. cantalupensis) leading to a majority of diploid regenerants’. Scientia Hort, 1999, 84: 91–99.
- SCHULZE J, BALKO C, ZELLNER B, KOPREK T, HANSCH R, NERLICH A, MENDEL
RR, ‘Biolistic transformation of cucumber using embryogenic suspension
cultures: long-term expression of reporter genes’. Plant Sci, 1995, 112:
197–206.
- GRAY DJ, HIEBERT E, KELLEY KT, COMPTON ME, GABA VP, ‘Comparison of
methods to transform embryogenic cotyledons of melon’. Hort Sci, 1995, 30: 788.
- KATAVIC V, JELASKA S, BAKRAN-PETRICIOLI T, DAVID C, ‘Host-tissue
differences in transformation of pumpkin (Cucurbita pepo L.) by Agrobacterium rhizogenes’. Plant Cell Tissue Organ Cult, 1991, 24:
35–42.
- TOPPI LSD, PECCHIONI N, DURANTE M, ‘Cucurbita pepo L. can be
transformed by Agrobacterium rhizogenes’. Plant Cell Tissue Organ Cult, 1997, 51: 89–93.
- CHEN W, CHIU C, LIU H, LEE T, CHENG J, LIN C, WU Y, CHANG H, ‘Gene transfer
via pollen-tube pathway for anti F-usarium wilt in watermelon’. Biochem Mol Biol Int, 1998, 46: 1201–1209.
- PROVVIDENTI R, ‘Viral diseases of cucurbits and sources of resistance’. Technical Bulletin, Food and Fertiliz Technol Center, Taipei, Taiwan,
1986, 93.
- ZITTER T, HOPKINS DL, THOMAS CE, (eds) Compendium of Cucurbit Diseases. APS Press, St. Paul, Minnesota 1996, 87pp.
- CHEE PP, SLIGHTOM JL, ‘Transfer and expression of cucumber mosaic virus
coat protein gene in the genome of Cucumis sativus’. J Am Soc Hort Sci,
1991, 116: 1098–1102.
- GONSALVES D, CHEE P, PROVVIDENTI R, SEEM R, SLIGHTON JL, ‘Comparison
of coat protein-mediated and genetically-derived resistance in cucumbers
to infection by cucumber mosaic virus under field conditions with natural
challenge inoculations by vectors’. Bio/Technol, 1992, 10: 1562–1570.
- YOSHIOKA K, HANADA K, HARADA T, MINORE Y, OOSAWA K, ‘Virus resistance
in transgenic melon plants that express the cucumber mosaic virus coat
protein gene and in their progeny’. Jpn J Breed, 1993, 43: 629–634.
- GONSALVES C, XUE B, YEPES M, FUCHS M, LING K, NAMBA S, CHEE P,
SLIGHTOM JL, GONSALVES D, ‘Transferring cucumber mosaic virus-white
leaf strain coat protein gene into Cucumis melo L. and evaluating
transgenic plants for protection against infections’. J Am Soc Hort Sci,
1994, 119: 345–355.
- CLOUGH GH, HAMM PB, ‘Coat protein transgenic resistance to watermelon
mosaic and zucchini yellows mosaic virus in squash and cantaloupe’. Plant Dis, 1995, 79: 1107–1109.
- TRICOLI DM, CARNEY KJ, RUSSELL PF, MCMASTER JR, GROFF DW, HADDEN KC,
HIMMEL PT, HUBBARD JP, BOESHORE ML, QUEMADA HD, ‘Field evaluation of
transgenic squash containing single or multiple virus coat protein gene
constructs for resistance to cucumber mosaic virus, watermelon mosaic virus
2, and zucchini yellow mosaic virus’. Bio/Technol, 1995, 13: 1458–1465.
- FUCHS M, MCFERSON JR, TRICOLI DM, MCMASTER JR, DENG RZ, BOESHORE
ML, REYNOLDS JF, RUSSELL PF, QUEMADA HD, GONSALVES D, ‘Cantaloupe
line CZW-30 containing coat protein genes of cucumber mosaic virus,
zucchini yellow virus, and watermelon mosaic virus-2 is resistant to these
three viruses in the field’. Molecular Breeding, 1997, 3: 279–290.
- FUCHS M, GONSALVES D, ‘Resistance of transgenic hybrids squash ZW-20
expressing the coat protein genes of zucchini yellow mosaic virus and
watermelon mosaic virus-2 to mixed infections by both potyviruses’. Bio/Technol, 1995, 13, 1466–1473.
- ARCE-OCHOA JP, DAINELLO F, PIKE LM, DREWS D, ‘Field performance
comparison of two transgenic summer squash hybrids to their parental
hybrid line’. Hort Sci, 1995, 30: 492–493.
- PLAGES JN, ‘L’avenir des variétés génétiquement modifiées pour la
résistance aux virus (un exemple développépar Lima grain)’. CR Acad Agric Fr, 1997, 83: 161–164.
- CANTO T, PALUKAITIS P, ‘Transgenically expressed cucumber mosaic virus
RNA1 simultaneously complements replication of cucumber mosaic virus
RNAs2 ans 3 confers resistance to systemic infection’. Virology, 1998, 250: 325–336.
- WINTERMANTEL WM, ZAITLIN M, ‘Transgene translatability increases
effectiveness of replicase-mediated resistance to cucumber mosaic virus’. J Gen Virol, 2000, 81: 587–595.
- KOMADA H, EZUKA A, ‘Varietal resistance to Fusarium wilt in cucumber’. Bull Veg Ornament Crops Res Stn Jpn Ser, 1974, A1: 233–245.
- PUNJA ZK, RAHARJO SHT, ‘Response of transgenic cucumber and carrot
plants expressing different chitinase enzymes to inoculation with fungal
pathogens’. Plant Dis, 1996, 80: 999–1005.
- BRAY EA, ‘Plant responses to water deficit’. Trends Plant Sci, 1997, 2: 48–
54.
- BORDAS M, MONTESINOS C, DABAUZA M, SALVADOR A, ROIG LA, SERRANO R,
MORENO V, ‘Transfer of the yeast salt tolerance gene HAL1 to Cucumismelo L. cultivars and in vitro evaluation of salt tolerance’. Transgenic Res,
1997, 6: 41–50.
- SERRANO R, CULIANZ-MACIA FA, MORENO V, ‘Genetic engineering of salt
and drought tolerance with yeast regulatory genes’. Scientia Hort, 1999, 78: 261–269.
- CLENDENNEN SK, KELLOGG JA, WOLFF KA, MATSUMURA W, PETERS S,
VANWINKLE JE, COPES B, PIEPER M, KRAMER MG, ‘Genetic engineering of
cantaloupe to reduce ethylene biosynthesis and control ripening’. In:
Kanellis AK, Klee CCH, Bleecker AB, Pech JC, Grierson D, (eds) Biologyand Biotechnology of the Plant Hormone Ethylene II, pp. 371–379.
Kluwer Academic Publishers, Dordrecht, The Netherlands 1999.
- BALAGUÉC, WATSON CF, TURNER AJ, ROUGEP, PICTON S, PECH JC, GRIERSON
D, ‘Isolation of a ripening and wound-induced cDNA from Cucumis melo L. encoding a protein with homology to the ethylene-forming enzyme’. Eur J Biochem, 1993, 212: 27–34.
- AYUB R, GUIS M, BEN AMOR M, GILLOT L, ROUSTAN JP, LATCHÉA, BOUZAYEN
M, PECH JC, ‘Expression of ACC oxidase antisense gene inhibits ripening of
cantaloupe melon fruits’. Nature Biotech, 1996, 14: 862–866.
- GUISM, BOTONDI R, BEN-AMORM, AYUB R, BOUZAYENM, PECHJC, LATCHÉA, ‘Ripening-associated biochemical traits of Cantaloupe Charentais melons
expressing an antisense ACC oxidase transgene’. J Am Soc Hort Sci, 1997, 122: 748–751.
- BAUCHOT A, MOTTRAM D, DODSON A, JOHN P, ‘Effect of antisense ACC
oxidase on the formation of volatile esters in Cantaloupe Charentais
melons (Cv. Védrantais)’. J Agric Food Chem, 1998, 46: 4787–4792.
- BEN AMOR M, FLORES B, LATCHÉA, BOUZAYEN M, PECH JC, ROMOJARO F,
‘Inhibition of ethylene biosynthesis by antisense ACC oxidase RNA prevents chilling injury in Charentais Cantaloupe melons’. Plant Cell Environ, 1999, 22: 1579–1586.
- SMITH PG, ‘Horticultural classification of peppers grown in the United
States’. Hort Sci, 1987, 22: 11–13.
- STEINITZ B, WOLF D, MATZEVITCH-JOSEF T, ZELCER A, ‘Regeneration in vitro
and genetic transformation of pepper (Capsicum spp.): the current state of
the art’. Capsicum & Eggplant Newsletter, 1999, 18: 9–15.
- OCHOA-ALEJO N, IRETA-MORENO ML, ‘Cultivar differences in shoot forming capacity of hypocotyl tissues of chilli pepper (Capsicum annuum L.) cultured in vitro’. Scientia Hort, 1990, 42: 21–28.
- SZASZ A, NERVO G, FARI M, ‘Screening for in vitro shoot-forming capacity of seedling explants in bell pepper’, Plant Cell Rep, 1995,14: 666–669.
- MORRISON RA, KONING RE, EVANS DA, Pepper. In: Evans DA, Sharp WR,
Ammirato PV (eds) Handbook of Plant Culture, pp. 552–573. Macmillan,
New York 1986.
- FARI M, CZAKO M, ‘Relationship between position and morphogenetic response of pepper hypocotyl explants cultured in vitro’, Scientia Hort,
1981, 15: 207–213.
- ZHU Y, OUYANG W, ZHANG Y, CHEN Z, ‘Transgenic sweet pepper plants from Agrobacterium mediated transformation’. Plant Cell Rep, 1996, 16: 71–75.
- ARROYO R, REVILLA MA, ‘In vitro plant regeneration from cotyledon and
hypocotyl segments in two bell pepper cultivars’. Plant Cell Rep, 1991, 10: 414–416.
- FARI M, TURI Z, CSILLAG F, ‘Comparative studies on in vitro regeneration of seedling explants in chili pepper (Capsicum annuum L.)’. Acta Hort, 1990, 280: 131–134.
- DIAZ I, MORENO R, POWER JB, ‘Plant regeneration from protoplasts of Capsicum annuum’. Plant Cell Rep, 1988, 7: 210–212.
- HARINI I, LAKSHMI SITA G, ‘Direct somatic embryogenesis and plant regeneration from immature embryos of chilli (Capsicum annuum L.)’. Plant Sci, 1993, 89: 107–112.
- BINZEL ML, SANKHLA N, JOSHI S, SANKHLA D, ‘Induction of direct somatic embryogenesis and plant regeneration in pepper (Capsicum annuum L.)’. Plant Cell Rep, 1996, 15: 536–540.
- LIU W, PARROTT WA, HILDEBRAND DF, COLLINS GB, WILLIAMS EG,
‘Agrobacterium-induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes’. Plant Cell Rep, 1990, 9: 360–364.
- SZASZ A, MITYKO J, ANDRASFALVY A, FARI M, ‘Methodological and genetic aspects of in vitro plant regeneration and genetic transformation of the recalcitrant pepper (Capsicum annuum L.)’. Acta Hort, 1997, 447: 365–366.
- MANOHARAN M, VIDYA CSS, SITA GL, ‘Agrobacterium-mediated genetic transformation in hot chilli (Capsicum annuum L. var. Pusa Jwala)’. Plant Sci, 1998, 131: 77–83.
- LIM H, LEE G, YOU Y, PARK E, SONG Y, YANG D, CHOI K, ‘Regeneration and genetic transformation of hot pepper plants’. Acta Hort, 1999, 483: 387–396.
- TSAFTARIS A, ‘The development of herbicide-tolerant transgenic crops’. Field Crops Research, 1996, 45: 115–123.
- KIM SJ, LEE SJ, KIM BD, PAEK KH, ‘Satellite-RNA-mediated resistance to cucumber mosaic virus in transgenic plants of hot pepper (Capsicum annuum cv. Golden Tower)’. Plant Cell Rep, 1997, 16: 825–830.
- DERUE`RE J, BOUVIER F, STEPPUHN J, KLEIN A, CAMARA B, KUNTZ M,
‘Structure and expression of two plant genes encoding chromoplastspecific
proteins: occurrence of partially spliced transcripts’. Biochem Biophys Res Commun, 1994, 199: 1144–1150.
- DERUE`RE J, RÖMER S, D’HARLINGUE A, BACKHAUS RA, KUNTZ M, CAMARA B,
‘Fibril assembly and carotenoid over accumulation in chromoplasts: a model for supra molecular lipoprotein structures’. Plant Cell, 1994, 6: 119–133.
- KUNTZ M, CHEN HC, SIMKIN AJ, RÖMER S, SHIPTON CA, DRAKE R, SCHUCH W,
BRAMLEY PM, ‘Upregulation of two ripening-related genes from a nonclimacteric plant (pepper) in a transgenic climacteric plant (tomato)’. Plant J, 1998, 13: 351–361.
- GURI A, SINK KC, ‘Agrobacterium transformation of eggplant’. J Plant Physiol, 1988, 133: 52–55.
- ROTINO GL, GLEDDIE S, ‘Transformation of eggplant (Solanum melongena L.) is using a binary Agrobacterium tumefaciens vector’. Plant Cell Rep, 1990, 9: 26–29.
- ROTINO GL, ARPAIA S, IANNACONE R, IANNAMICO V, MENNELLA G, ONOFANO
V, PERRONE D, SUNSERI F, XIKE Q, SPONGA S, Agrobacterium-mediated
transformation of Solanum spp. using a Bacillus thuringiensis gene against
coleopteran. Proc. VIIIth Meeting Genetics and Breeding on Capsicum and Eggplant, Rome, Italy, 1992, pp. 295–300.
- BILLINGS S, JELENKOVIC G, CHIN C-K, EBERHARDT J, ‘The effect of growth
regulators and antibiotics on eggplant transformation’. J Am Soc Hort Sci,
1997, 122: 158–162.
- LA PORTA N, BELLONI V, ROTINO GL, ‘Regeneration of transgenic eggplants
(Solanum melongena L.) for a cysteine proteinase inhibitor’. Capsicum & Eggplant Newsletter, 1998, 17: 92–95.
- CHEN Q, JELENKOVIC G, CHEEKOK C, BILLINGS S, EBERHARDT J, GOFFREDA JC,
DAY P, ‘Transfer and transcriptional expression of coleopteran Cry IIIB endotoxin gene of Bacillus thuringiensis in eggplant’. J Am Soc Hort Sci, 1995, 120: 921–927.
- JELENKOVIC G, BILLINGS S, QI C, LASHOMB J, HAMILTON G, GHIDIU G,
‘Transformation of eggplant with synthetic Cry IIIA gene produces a high level of resistance to the Colorado potato beetle’. J Am Soc Hort Sci, 1998, 123: 19–25.
- ASHFAQ FAROOQUI M, RAO AV, JAYASREE T, SADANANDAM A, ‘Induction of
atrazine resistance and somatic embryo genes is in Solanum melongena’. Theor Appl Genet, 1997, 95: 702–705.
- MCGAUGHEY WH, WALON ME, ‘Managing insect resistance to Bacillus thuringiensis’. Science, 1992, 128: 1451–1455.
- ARPAIA S, MENNELLA G, ONOFARO V, PERRI E, SUNSERI F, ROTINO GL,
‘Production of transgenic eggplant (Solanum melongena L.) resistant to
Colorado Potato Beetle (Leptinotarsa decemlineata Say)’. Theor Appl Genet, 1997, 95: 329–334.
- ARPAIA S, ACCIARRI N, LEO GMD, MENNELLA G, SABINO G, SUNSERI F, ROTINO
GL, Field performance of Bt-expressing transgenic eggplant lines resistant
to colorado potato beetle. Proceedings of the Xth EUCARPIA Meeting on
Genetics and Breeding of Capsicum and Eggplant, Avignon, France 1998,
pp. 191–194.
- KUMAR PA, MANDAOKAR A, SREENIVASU K, CHAKRABARTI SK, BISARIA S,
SHARMA SR, KAUR S, SHARMA RP, ‘Insect-resistant transgenic brinjal plants’. Molecular Breeding, 1998, 4: 33–37.
- RYAN CA, ‘Protease inhibitors in plants genes for improving defenses
against insects and pathogens’. Ann Rev Phytopathol, 1990, 28: 425–449.
- DONZELLA G, SPENA A, ROTINO GL, ‘Transgenic parthenocarpic eggplants:
superior germplasm for increased winter production’. Molecular Breeding,
2000, 6: 79–86.
- ROTINO GL, PERRI E, ACCIARRI N, SUNSERI F, ARPAIA S, ‘Development of
eggplant varietal resistance to insects and diseases via plant breeding’. Adv Hort Sci, 1997, 11: 193–201.
- YAMADA T, PALM CJ, BROOKS B, KOSUGE T, ‘Nucleotide sequence of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA’. Proc Natl Acad Sci USA, 1985, 82:
6522–6526.
- CHRISTOU P, ‘Biotechnology applied to grain legumes’. Field Crops Research, 1997, 53: 83–97.
- NICOLL SM, BRIGHAM LA, FUSHI W, HAWES MC, ‘Expression of transferred
genes during hairy root development in pea’. Plant Cell Tissue Organ Cult, 1995, 42: 57–66.
- PUONTI-KAERLAS J, OTTOSSON A, ERICKSSON T, ‘Survival and growth of pea
protoplasts after transformation by electroporation’. Plant Cell Tissue Organ Cult, 1992, 30: 141–148.
- PUONTI- KAERLAS J, ERIKSSON T, ENGSTROM P, ‘Production of transgenic
pea (Pisum sativum L.) plants by Agrobacterium tumefaciens-mediated
gene transfer’. Theor Appl Genet, 1990, 80: 246–252.
- PUONTI-KAERLAS J, ERIKSSON T, ENGSTROM P, ‘Inheritance of a bacterial
hygromycin phosphotransferase gene in the progeny of primary transgenic
pea plants.’ Theor Appl Genet, 1992, 84: 443–450.
- SCHROEDER H, SCHOTZ A, WARDLEY-RICHARDSON T, SPENCER D, HIGGINS T,
‘Transformation and regeneration of two cultivars of pea (Pisum sativum L)’. Plant Physiol, 1993, 101: 751–757.
- GRANT JE, COOPER PA, MCARA AE, FREW TJ, ‘Transformation of peas (Pisum
sativum L.) using immature cotyledons’. Plant Cell Rep, 1995, 15: 254–
258.
- GRANT J, PITHER-JOYCE M, FIFIELD W, COOPER P, TIMMERMAN-VAUGHAN G,
‘Partial resistance to alfalfa mosaic virus in transgenic pea (Pisum sativum L.)’. 3rd European conference on grain legumes. Opportunities for high
quality, healthy and added value crops to meet European demands,
Valladolid, Spain (1998).
- DAVIES DR, HAMILTON J, MULTINEAUX P, ‘Transformation of peas’. Plant Cell Rep, 1993, 12: 180–183.
- BEAN SJ, GOODING PS, MULLINEAUX PM, DAVIES DR, ‘A simple system for
pea transformation’. Plant Cell Rep, 1997, 16: 513–519.
- BABAOGLU M, DAVEY MR, POWER JB, ‘Genetic engineering of grain
legumes: key transformation events’. Ag Biotech Net, 2000, 2.
- MARIOTTI D, FONTANA GS, SANTINI L, ‘Genetic transformation of grain
legumes: Phaseolus vulgaris L. and P. coccineus L’. J Genet Breed, 1989,43: 77–82.
- MCCLEAN P, CHEE P, HELD B, SIMENTAL J, DRONG RF, SLIGHTOM J,
‘Susceptibility of dry bean (Phaseolus vulgaris L.) Agrobacterium infection: Transformation of cotyledonary and hypocotyl tissues’. Plant Cell Tissue Organ Cult, 1991, 24: 131–138.
- ZHANG Z, DERMOT P, COYNE, MITRA A, ‘Factors affecting Agrobacterium mediated
transformation of common bean’. J Am Soc Hort Sci, 1997,122:
300–305.
- LEWIS ME, BLISS FA, ‘Tumor formation and β-glucuronidase expression in Phaseolus vulgaris inoculated with Agrobacterium tumefaciens’. J Am SocHort Sci, 1994, 119: 361–366.
- CHRISTOU P, MCCABE DE, MARTINELL BJ, SWAIN WF, ‘Soybean genetic
engineering – commercial production of transgenic plants’. Trends Biotechnol, 1990, 8: 145–151.
- WALLACE, KM, BATHE JH, MARTINELL BJ, MCCABE DE, ‘Stable
transformation of Phaseolus vulgaris via electric-discharge mediated
particle acceleration’. Plant Cell Rep, 1993, 12: 165–169.
- KIM JW, MINAMIKAWA T, ‘Transformation and regeneration of French bean
plants by the particle bombardment process’. Plant Sci, 1996, 117: 131–138.
- ARAGAO FJL, BARROS LMG, BRASILEIRO ACM, RIBEIRO SG, SMITH FD,
SANFORD JC, FARIA JC, RECH EL, ‘Inheritance of foreign genes in transgenic
bean (Phaseolus vulgaris L.) co-transformed via particle bombardment’. Theor Appl Genet, 1996, 93: 142–150.
- ARAGAO FJL, RIBEIRO SG, BARROS LMG, BRASILEIRO ACM, MAXWELL DP,
RECH EL, FARIA JC, ‘Transgenic beans (Phaseolus vulgaris L.) engineered
to express viral antisense RNAs show delayed and attenuated symptoms to
bean golden mosaic gemini virus’. Molecular Breeding, 1998,4: 491–499.
- SAALBACH I, WADDELL D, PICKARDT T, SCHIEDER O, MUNTZ K, ‘Stable
expression of the sulphur-rich 2S albumin gene in transgeVnicicia narbonensis increases the methionine content of seeds’. J Plant Physiol,
1995, 145: 674–681.
- PICKARDT T, SAALBACH I, WADDELL D, MEIXNER MG, MUNTZ K, SCHIEDER O,
‘Seed specific expression of 2S albumin gene from Brazil nut (Bertholletia excelsa) in transgenic Vicia’. Molecular Breeding, 1995, 1: 295–301.
- BHARGAVA SC, SMIGOCKI AC, ‘Transformation of tropical grain legumes
using particle bombardment.’ Current Science, 1994, 66: 439–442.
- KARTHIKEYAN AS, SARMA KS, VELUTHAMBI K, ‘Agro bacterium tumefaciens-mediated transformation of Vigna mungo L. Hepper’. Plant Cell Rep, 1996, 15: 328–331.
- JAIWAL PK, SAUTTER C, POTRYKUS I, ‘Agrobacterium rhizogenes-mediated
gene transfer in mungbean’. Current Science, 1998, 75: 41–45.
- PENZA R, LURQUIN PF, FILIPPONE E,‘Gene transfer by cocultivation of
mature embryos withAgrobacterium tumefaciens: application to cowpea
(Vigna unguiculata Walp.)’. J Plant Physiol, 1991, 138: 39–42.
- POTRYKUS I, ‘Gene transfer to plants: assessment and perspectives’. Physiol Plant, 1990, 79: 125–134.
- CHOWRIRA GM, AKELLA V, FUERST PE, LURQUIN PF, ‘Transgenic grain
legumes obtained by in planta electroporation-mediated gene transfer’. Molecular Biotechnology, 1996, 5: 85–96.
- WARKENTIN TD, MCHUGHEN A, ‘Crown gall transformation of lentil (Lens culinaris Medik.) with virulent strains of Agro bacterium tumefaciens’. Plant Cell Rep, 1991, 10: 489–493.
- WARKENTIN TD, MCHUGHEN A, ‘Agrobacterium tumefaciens-mediated betaglucoronidase
(GUS) gene expression in lentil (Lens culinaris Medik.)
tissues’. Plant Cell Rep, 1992, 11: 274–278.
- OKTEM HA, MAHMOUDIAN M, EYIDODAN F, YUCEL M, ‘GUS gene delivery
and expression in lentil cotyledonary nodes using particle bombardment’. Lens Newsletter, 1999, 26: 3–6.
- FONTANA GS, SANTINI L, CARETTO S, FRUGIS G, MARIOTTI D, ‘Genetic
transformation in the grain legume Cicer arietinum L. (chick pea)’.Plant Cell Rep, 1993, 12: 194–198.
- KAR S, JOHNSON TM, NAYAK P, SEN SK, ‘Efficient transgenic plant
regeneration through Agrobacterium-mediated transformation of chickpea
(Cicer arietinum L.)’. Plant Cell Rep, 1996, 16: 32–37.
- KRISHNAMURTHY KV, SUHASINI K, SAGARE AP, MEIXNER M, KATHEN AD,
PICKARDT T, SCHIEDER O, ‘Agrobacterium mediated transformation of
chickpea (Cicer arietinum L.) embryo axes’. Plant Cell Rep, 2000, 19:
235–240.
- ALTINKUT A, GOZUKIRMIZ N, BAJROVIC K, GOZUKIRMIZI N, ‘High percentage of
regeneration and transformation in chickpea Acta Hort, 1997,447: 319–320.
- KAR S, BASU D, DAS S, RAMKRISHNAN NA, MUKHERJEE P, NAYAK P, SEN SK,
‘Expression of Cry IA(c) gene of Bacillus thuringiensis in transgenic
chickpea plants inhibits development of podborer (Heliothis armigera)
larvae’. Transgenic Res, 1997, 6: 177–185.
- KUNIT T, SALOMON R, ZAMIR D, NAVOR N, ZEIDAN M, MICHELSON I, GAFNI Y,
CZOSNEK H, ‘Transgenic tomato plants expressing the tomato yellow leaf
curl virus capsid protein are resistant to the virus’. Bio/Technol, 1994, 12:
500–504.
- CHOWRIRA GM, CAVILEER TD, GUPTA SK, LURQUIN PF, BERGER PH, ‘Coat
protein-mediated resistance to pea enation mosaic virus in transgenic Pisum sativum L’. Transgenic Res, 1998, 7: 265–271.
- SHADE RE, SCHROEDER HE, PUEYO JL, TABE LM, MURDOCK LL, HIGGINS TJV,
CHRISPEELS MJ, ‘Transgenic pea seeds expressing the alpha-amylase
inhibitor of the common bean are resistant to bruchid beetles’. Bio/Technol, 1994, 12: 793–796.
- SCHROEDER HE, GOLLASCH S, MOORE A, TABE LM, CRAIG S, HARDIE DC,
CHRISPEELS MJ, SPENCER D, HIGGINS TJV, ‘Bean alpha-amylase inhibitor
confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas
(Pisum sativum L.)’. Plant Physiol, 1995, 107: 1233–1239.
- MORTON RL, SCHROEDER HE, BATEMAN KS, CHRISPEELS MJ, ARMSTRONG E,
HIGGINS TJV, ‘Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum)
under filed conditions’. Proc Natl Acad Sci USA, 2000, 97: 3820–3825.
- CHARITY JA, ANDERSON MA, BITTISNICH DJ, WHITECROSS M, HIGGINS TJV,
‘Transgenic tobacco and peas expressing a proteinase inhibitor fromNicotiana alata have increased insect resistance’. Molecular Breeding,
1999, 5: 357–365.
- MA Y, BLISS FA, ‘Seed proteins in bean’. Crop Sci, 1978, 18: 431–437.
- ALTENBACH SB, PEARSON KW, LEUNG FW, SUN SSM, ‘Cloning and sequence
analysis of a cDNA encoding a Brazil nut protein exceptionally rich in
methionine’. Plant Mol Biol, 1987, 8: 239–250.
- GANDER ES, HOLMSTROEM KO, DE PAIVA GR, DE CASTRO LAB, CARNEIRO M,
GROSSI DE SA MF, ‘Isolation characterization and expression of a gene
coding for a 2S albumin from Bertholletia excelsa (Brazil nut)’. Plant Mol Biol, 1991, 16: 437–448.
- ARAGAO FJL, BARROS LMG, SOUSA MVD, GROSSI DE SA MF, ALMEIDA ERP,
GANDER ES, RECH EL, ‘Expression of a methionine-rich storage albumin
from the Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in
transgenic bean plants (Phaseolus vulgaris L., Fabaceae)’.Genet Mol Biol, 1999, 22: 445–449.
- PICKARDT T, MEIXNERM, SCHADEV, SCHIEDERO, ‘Transformation of Vicia narbonensis via Agrobacterium-mediated gene transfer’. Plant Cell Rep,
1991, 9: 535–538.
- NORDLEE JA, TAYLOR SL, TOWNSEND JA, THOMAS LA, BUSH RK,
‘Identification of a brazil nut-allergen in transgenic soybeans’. New England J Med, 1996, 334: 688–692.
- OSBORN TC, ALEXANDER DC, SUN SSM, CARDONA C, BLISS FA, ‘Insectidal
activity and lectin homology of arcelin seed protein’. Science, 1989,240:
207–210.
- PRATT RC, SINGH NK, SHADE RE, MURDOCK LL, BRESSAN RA, ‘Isolation and
partial characterisation of a seed lectin from tepary bean that delays
bruchid beetle development’. Plant Physiol, 1990, 93: 1453–1459.
- EDWARDS GA, HEPHER A, CLERK SP, BOULTER D, ‘Pea lectin is correctly
processed, stable and active in leaves of transgenic potato plants’. Plant Mol Biol, 1991, 17: 89–100.
- HILDER VA, GATEHOUSE AMR, SHEERMAN SE, BARKER RF, BOULTER D, ‘A
novel mechanism of insect resistance engineered into tobacco’. Nature,
1987, 300: 160–163.
- NEWELL CA, LOWE JM, MERRYWEATHER A, ROOKE LM, HAMILTON WDO,
‘Transformation of sweet potato (Ipomoea batatas (L.) Lam.) with Agrobacterium tumefaciens and regeneration of plants expressing
cowpea trypsin inhibitor and snowdrop lectin’. Plant Sci, 1995, 107:
215–227.
- SINDHU AS, ZHENG Z, MURAI N, ‘The pea storage protein legumin was
synthesized, processed, and accumulated stably in transgenic rice
endosperm’. Plant Sci, 1997, 130: 189–196.
- RIGGS CD, HUNT DC, LIN J, CHRISPEELS MJ, ‘Utilization of luciferase fusion
genes to monitor differential regulation of phytohemagglutinin and
phaseolin promoters in transgenic tobacco’. Plant Sci, 1989, 63: 47–57.
- ALTABELLA T, CHRISPEELS MJ, ‘Tobacco plants transformed with the bean aai gene express an inhibitor of insect a-amylase in their seeds’. Plant Physiol, 1990, 93: 805–810.
- GOOSSENS A, DILLEN W, CLERCQ JD, MONTAGU MV, ANGENON G, ‘The arcelin-5 gene of Phaseolus vulgaris directs high seed-specific expression
in transgenic Phaseolus acutifolius and Arabidopsis plants’. Plant Physiol,
1999, 120: 1095–1104.
- PATER SD, PHAM K, CHUA NH, MEMELINK J, KIJNE J, ‘A 22-bp fragment of the
pea lectin promoter containing essential TGAC-like motifs confers seed specific
gene expression.’ Plant Cell, 1993, 5: 877–886.
- MANDACI S, DOBRES MS, ‘A promoter directing epidermal expression in
transgenic alfafa’. Plant Mol Biol, 1997, 34: 961–965.
- DE VRIES SC, BOOIJ H, MEYERINK P, HUISMAN G, WILDE DH, THOMAS TL,
KAMMEN AV, ‘Acquisition of embryogenic potential in carrot cellsuspension
cultures’. Planta, 1988, 176: 196–204.
- BALESTRAZZI A, CARBONERA D, CELLA R, ‘Transformation of Daucus carota hypocotyls mediated by Agro bacterium tumefaciens’. J Genet Breed, 1991, 45: 135–140.
- PAWLICKI N, SANGWAN-NORREEL B, ‘Factors influencing the Agro- bacterium tumefaciens-mediated transformation of carrot (Daucus carota L.)’. Plant Cell Tissue Organ Cult, 1992, 31: 129–139.
- SCOTT R, DRAPER J, ‘Transformation of carrot tissues derived from
proembryogenic suspension cells: a useful model system for gene
expression studies in plants’. Plant Mol Biol, 1987,8: 265–274.
- THOMAS J, GUILTINAN M, BUSTOS S, THOMAS T, NESSLER C, ‘Carrot (Daucus carota) hypocotyl transformation using Agrobacterium tumefaciens’. Plant Cell Rep, 1989, 8: 354–357.
- WURTELE E, BULKA K, ‘A simple, efficient method for the Agro bacterium mediated
transformation of carrot callus cells’. Plant Sci, 1989, 61: 253–262.
- HARDEGGER M, STURM A, ‘Transformation and regeneration of carrot
(Daucus carota L.)’. Molecular Breeding, 1998, 4: 119–127.
- TANG GQ, STURM A, ‘Antisense repression of sucrose synthase in carrot
(Daucus carota L.) affects growth rather than sucrose partitioning’. Plant Mol Biol, 1999, 41: 465–479.
- TANG GQ, LUSCHER M, STURM A, ‘Antisense repression of vacuolar and cell
wall invertase in transgenic carrot alters early plant development and
sucrose partitioning’. Plant Cell, 1999, 11: 177–189.
- GILBERT MO, ZHANG YY, PUNJA ZK, ‘Introduction and expression of
chitinase encoding genes in carrot following agro bacterium-mediated
transformation’. In Vitro Cell Dev Biol, 1996, 32: 171–178.
- NISHIGUCHI M, UEHARA Y, KOMAKI K, ‘Stable transformation of sweet
potato by electroporation’. In Vitro Cell Dev Biol, 1992, 28: 126.
- PRAKASH CS, VARADARAJAN U, ‘Genetic transformation of sweet potato by
particle bombardment’. Plant Cell Rep, 1992, 11: 53–57.
- OTANI M, MII M, HANDA T, KAMADA H, SHIMADA T, ‘Transformation of sweet
potato (Ipomoea batatas L. Lam.) plants by Agro bacterium rhizogenes’. Plant Sci, 1993, 94: 151–159.
- GAMA MICS, LEITRE RP, JR., CORDEIRO AR, CANTLIFFE DJ, ‘Transgenic sweet
potato plants obtained by Agro bacterium tumefaciens-mediated
transformation’. Plant Cell Tissue Organ Cult, 1996, 46: 237–244.
- MORAN R, GARCIA R, LOPEZ A, ZALDUA Z, MENA J, GARCIA M, ARMAS R,
SOMONTE D, RODRIGUEZ J, GOMEZ M, PIMENTEL E, ‘Transgenic sweet potato
plants carrying the delta-endotoxin gene from Bacillus thuringiensis var. tenebrionis’. Plant Sci, 1998, 139: 175–184.
- CHÉE RP, CANTLIFFE DJ, ‘Somatic embryony patterns and plant regeneration
in Ipomoeas batatas Poir.’. In Vitro Cell Dev Biol, 1988, 24: 955–958.
- DOMMISSE EM, LEUNG DWM, SHAW ML, CONNER AJ, ‘Onion is a
monocotyledonous host for Agro bacterium’. Plant Sci, 1990, 69: 249–257.
- BARANDIARAN X, MARTIN N, RODRIGUEZ-CONDE MF, DI PIETRO A, MARTIN J,
‘An efficient method for callus culture and shoot regeneration of garlic
(Allium sativum L.)’. HortSci, 1999, 34: 348–349.
- BUITEVELD J, FRANSZ PF, CREEMERS-MOLENAAR J, ‘Induction and
characterization of embryogenic callus types for the initiation of suspension cultures of leek (Allium ampeloprasum L.)’. Plant Sci, 1994, 100: 195–202.
- BUITEVELD J, CREEMERS-MOLENAAR J, ‘Plant regeneration from protoplasts
isolated from suspension cultures of leek (Allium ampeloprasum L.)’. Plant Sci, 1994, 100: 203–210.
- HINCHEE M, ‘Development of virus-resistant sweet potato’. In: International
C (ed.) Agricultural Biotechnology in International Development,
Wallingford, UK 1998.
- GOGARTEN JP, FICHMANN J, BRAUN Y, MORGAN L, STYLES P, DELAPP K, TAIZ
L, ‘The use of antisense mRNA to inhibit the tonoplast H+ ATPase in
carrot’. Plant Cell, 1992, 4: 851–864.
- MALIK MK, SLOVIN JP, HWANG CH, ZIMMERMAN JL, ‘Modified expression of
a carrot small heat shock protein gene, Hsp 17.7, results in increased or
decreased thermo tolerance’. Plant J, 1999, 20: 89–99.
- DING LC, HU CY, ‘Development of insect-resistant transgenic cauliflower
plants expressing the trypsin inhibitor gene isolated from local sweet
potato’. Plant Cell Rep, 1998, 17: 854–860.
- PUDDEPHAT IJ, RIGGS TJ, FENNING TM, ‘Transformation of Brassica oleracea L. a critical review’. Molecular Breeding, 1996, 2: 185–210.
- CHRISTEY MC, SINCLAIR BK, BRAUN RH, WYKE L, ‘Regeneration of
transgenic vegetable brassicas (Brassica aleracea and B. campestris) via
Ri-mediated transformation’. Plant Cell Rep, 1997, 16: 587–593.
- DE BLOCK M, DE BROUWER D, TENNING P, ‘Transformation of Brassica napus and Brassica aleracea using Agrobacterium tumefaciens and the
expression of the bar and neo genes in the transgenic plants’. Plant Physiol, 1989, 91: 694–701.
- BHALLA L, SMITH NA, ‘Agrobacterium tumefaciens-mediated transformation
of cauliflower, Brassica oleracea var. botrytis’. Molecular Breeding, 1998, 4: 531–541.
- METZ TD, DIXIT R, EARLE ED, ‘Agrobacterium tumefaciens-mediated
transformation of broccoli (Brassica oleracea var. italica) and cabbage
(B. oleracea var. capitata)’. Plant Cell Rep, 1995, 15: 287–292.
- TORIYAMA K, STEIN JC, NASRALLAH ME, NASRALLAH JB, ‘Transformation
of Brassica oleracea with an S-locus gene from B. campestris changes
the self-incompatibility phenotype’. Theor Appl Genet, 1991, 81: 769–776.
- METZ TD, ROUSH RT, TANG JD, SHELTON AM, EARLE ED, ‘Transgenic broccoli
expressing a Bacillus thuringiensis insecticidal crystal protein:
implications for pest resistance management strategies’. Mesolecular Breeding, 1995, 1: 309–317.
- CAO J, TANG JD, ‘Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to
Cry1A or Cry1C’. Molecular Breeding, 1999, 5: 131–141.
- HENZI MX, CHRISTEY MC, MCNEIL DL, DAVI ES KM, ‘Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica) with an antisense 1-aminocyclopropane-1-carboxylic acid
oxidase gene’. Plant Sci, 1999, 143: 55–62.
- HENZI MX, MCNEIL DL, CHRISTEY MC, LILL RE, ‘A tomato antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene causes reduced
ethylene production in transgenic broccoli’. Aust J Plant Physiol, 1999, 26: 179–183.
- JUN SI, KWON SY, ‘Agro bacterium-mediated transformation and
regeneration of fertile transgenic plants of chinese cabbage (Brassica
campestris ssp. pekinensis cv. ‘‘Spring Flavor’’. Plant Cell Rep, 1995, 14:
620–625.
- LIM HT, YOU YS, PARK EJ, SONG YN, ‘High plant regeneration genetic
stability of regenerants and genetic transformation of herbicide resistance
gene (Bar) in chinese cabbage (Brassica campestris ssp. pekinensis)’. Acta Hort, 1998, 459: 199–208.
- MICHELMORE R, MARSH E, SEELY S, LANDRY B, ‘Transformation of lettuce
(Lactuca sativa) mediated by Agro bacterium tumefaciens’. Plant Cell Rep, 1987, 6: 439–442.
- PANG SZ, JAN FJ, CARNEY K, STOUT J, TRICOLI DM, QUEMADA HD, GONSALVES
D, ‘Post-transcriptional transgene silencing and consequent tospovirus
resistance in transgenic lettuce are affected by transgene dosage and plant
development’. Plant J, 1996, 9: 899–909.
- CHUPEAU MC, BELLINI C, GUERCHE P, MAISONNEUVE B, VASTRA G, CHUPEAU
Y, ‘Transgenic plants of lettuce (Lactuca sativa) obtained through
electroporation of protoplasts’. Bio/Technol, 1989, 7: 503–508.
- DINANT S, MAISONNEUVE B, ALBOUY J, CHUPEAU Y, CHUPEAU MC, BELLEC Y,
GAUDEFROY F, KUSIAK C, SOUCHE S, ROBAGLIA C, Lot H, ‘Coat protein
gene-mediated protection in lactuca sativa against lettuce möscaı
potyvirus strains’. Molecular Breeding, 1997, 3: 75–86.
- CURTIS IS, POWER JB, BLACKHALL NW, DE LAAT AMM, DAVEY MR,
‘Genotype-independent transformation of lettuce using Agro bacterium tumefaciens’. J Exp Bot, 1994, 45: 1441–1449.
- VERMEULEN A, VAUCHERET H, PAUTOT V, CHUPEAU Y, ‘Agrobacterium mediated transfer of a mutant Arabidopsis acetolactate synthase gene
confers resistance to chlorsulfuron in chicor (Cyichorium intybus L.)’. Plant Cell Rep, 1992, 11: 243–247.
- AL-KHAYRI JM, HUANG FH, MORELOCK TE, ‘Regeneration of spinach from
leaf callus’. Hort Sci, 1992, 26: 913–914.
- XIAO XG, BRANCHARD M, ‘Embryogenesis and plant regeneration of
spinach (Spinacia oleracea L.) from hypocotyl segments’. Plant Cell Rep,
1993, 13: 69–71.
- MOLVIG L, ROSE RJ, ‘A regeneration protocol for Spinacia oleracea using
gibberellic acid’. Aust J Bot, 1994, 42: 763–769.
- KNOLL KA, SHORT KC, CURTISIS, POWERJB, DAVEY MR, ‘Shoot regeneration
from cultured root explants of spinach (Spinacia oleracea L.): a system for Agrobacterium transformation’. Plant Cell Rep, 1997, 17: 96–101.
- YANG YM, AL-KHAYRI JM, ANDERSON EJ, ‘Transgenic spinach plants
expressing the coat protein of cucumber mosaic viruis’. In Vitro Cell Dev Biol Plant, 1997, 33: 200–204.
- ZHANG HX, ZEEVAART JAD, ‘An efficient Agrobacterium tumefaciensmediated
transformation and regeneration system for cotyledons of
spinach (Spinacia oleracea L.)’. Plant Cell Rep, 1999, 18: 640–645.
- TO KY, CHENG MC, CHEN LFO, CHEN SCG, ‘Introduction and expression of
foreign DNA in isolated spinach chloroplasts by electroporation’. Plant J,
1996, 10: 737–743.
- CONNER AJ, ABERNETHY DJ, ‘Genetic engineering of asparagus: assessment
of methods, field testing and safety considerations’. Acta Hort, 1996,415:
51–58.
- BYTEBIER B, DEBOECK F, DE GREVE H, VAN MONTAGU M, HERNALSTEENS JP,
‘T-DNA organization in tumor cultures and transgenic plants of the
monocotyledon Asparagus officinalis’. Proc Natl Acad Sci USA, 1987, 84:
5345–5349.
- HERNALSTEENS JP, THIA-TOONG L, SCHELL J, VAN MONTAGU M, ‘An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis’. Embo J, 1984, 3: 3039–3041.
- DELBREIL B, GUERCHE P, JULLIEN M, ‘Agrobacterium-mediated
transformation of Asparagus officinalis L. Long-term embryogenic callus
and regeneration of transgenic plants’. Plant Cell Rep, 1993, 12: 129–132.
- MUKHOPADHYAY S, DESJARDINS Y, ‘Direct gene transfer to protoplasts of
two genotypes of asparagus officinalis L. by electroporation’. Plant Cell Rep, 1994, 13: 421–424.
- GUANGYU C, CONNER AJ, FAUTRIER AG, FIELD RJ, ‘A shoot protoplast system
for genetic manipulation of asparagus’. Asparagus Research Newsletter,
1996,13: 18–25.
- SAITO T, NISHIZAWA S, NISHIMURA S, ‘Improved culture conditions for
somatic embryogenesis from Asparagus officinalis L. using an aseptic
ventilative filter’. Plant Cell Rep, 1991,10: 230–234.
- LI B, WOLYN DJ, ‘Recovery of transgenic asparagus plants by particle gun
bombardment of somatic cells’. Plant Sci, 1997,126: 59–68.
- CABRERA-PONCE JL, LOPEZ L, ASSAD-GARCIA N, MEDINA-AREVALO C, BAILEY
AM, HERRERA-ESTRELLA L, ‘An efficient particle bombardment system for
the genetic transformation of asparagus (Asparagus officinalis L.)’. Plant Cell Rep, 1997,16: 255–260.
- MCCABE MS, SCHEPERS F, VAN DER AREND A, MOHAPATRA U, DE LAAT AMM,
POWER JB, DAVEY MR, ‘Increased stable inheritance of herbicide resistance
in transgenic lettuce carrying a petE promoter-bar gene compared with a
CaMV 35S-bar gene’. Theor Appl Genet, 1999,99: 587–592.
- PASSELE`GUE E, KERLAN C, ‘Transformation of cauliflower (Brassica oleracea var. botrytis) by transfer of cauliflower mosaic virus genes
through combined cocultivation with virulent and avirulent strains of Agrobacterium’. Plant Sci, 1996,113: 79–89.
- YANG CH, CAROLL B, SCOFIELD S, JONES J, MICHELMORE R, ‘Trans activation
of Ds elements in plants of lettuce (Lactuca sativa)’. Mol Gen Genet,
1993,241: 389–398.
- OKUBARA PA, ARROYO G, R., SHEN KA, MAZIER M, MEYERS BC, OCHOA OE,
KIM S, YANG CH, MICHELMORE RW, ‘A transgenic mutant of lactuca sativa (lettuce) with a T-DNA tightly linked to loss of downy mildew resistance’. Molecular Plant Microbe Interactions, 1997,10: 970–977.
- CURTIS IS, POWER JB, DE LAAT AMM, CABOCHE M, DAVEY MR, ‘Expression of
a chimeric nitrate reductase gene in transgenic lettuce reduces nitrate in
leaves’. Plant Cell Rep, 1999,18: 889–896.
- GOTO F, YOSHIHARA T, SAIKI H, TAKAIWA F, SHIGEMOTO N, ‘Iron
accumulation in transgenic plants expressing the soybean ferritin gene’. Acta Hort, 2000,521: 101–109.
- GOTO F, YOSHIHARA T, SAIKI H, ‘Iron accumulation and enhanced growth in
transgenic lettuce plants expressing the iron-binding protein ferritin’. Theor Appl Genet, 2000,5: 658–664.
- PUCHTA H, ‘Removing selectable marker genes: taking the shortcut’. Trends Plant Sci, 2000,5: 273–274.
Support our developers
More in this section