References

  1. JEFFREY C, ‘Notes on Curcubitaceae, including a proposed new classification of the family’. Kew Bulletin, 1962, 15: 337–371.

  2. ROBINSON RW, DECKER-WALTERS DS, Cucurbits, Cab International, 1997.

  3. TRULSON AJ, SHAHIN EA, ‘In vitro plant regeneration in the genus Cucumis’. Plant Sci, 1986, 47: 35–43.

  4. KATHAL R, BHATNAGAR SP, BHOJWANI SS, ‘Regeneration of plants from leaf explants of Cucumis melo cultivar Pusa Sharbati’. Plant Cell Rep, 1988, 7: 449–451.

  5. TABEI Y, KITADE S, NISHIZAWA Y, KIKUCHI N, KAYANO T, HIBI T, AKUTSU K, ‘Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea)’. Plant Cell Rep, 1998, 17: 159–164.

  6. YADAV RC, SALEH MT, GRUMET R, ‘High frequency shoot regeneration from leaf explants of muskmelon’. Plant Cell Tissue Organ Cult, 1996, 45: 207–214.

  7. FICCADENTI N, ROTINO GL, ‘Genotype and medium affect shoot regeneration of melon’. Plant Cell Tissue Organ Cult, 1995,40: 293–295.

  8. DEBEAUJON I, BRANCHARD M, ‘Somatic embryogenesis in Curcubitacea’. Plant Cell Tissue Organ Cult, 1993, 34: 91–100.

  9. GRAY DJ, MC COLLEY DW, COMPTOM ME, ‘High-frequency somatic embryogenesis from quiescent seed cotyledons of Cucumis melo cultivars’. J Am Soc Hort Sci, 1993, 118: 425–432.

  10. ORIDATE T, ATSUMI H, ITO S, ARAKI H, ‘Genetic difference in somatic embryogenesis from seeds in melon (Cucumis melo L.)’. Plant Cell Tissue Organ Cult, 1992, 29: 27–30.

  11. EZURA H, AMAGAL H, YOSHIOKA K, OOSAWA K, ‘Highly frequent appearance of tetraploidy in regenerated plants, a universal phenomenon, in the tissue cultures of melon (Cucumis melo L.)’. Plant Sci, 1992, 85: 209–213.

  12. COLIJN-HOOYMANS CM, HAKKERT JC, JANSEN J, CUSTER JBM‘, Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages’. Plant Cell Tissue Organ Cult, 1994, 39: 211–217.

  13. GILISSEN LJW, VAN STAVEREN MJ, CREEMERS-MOLENAAR J, VERHOEVEN HA, ‘Development of polysomaty in seedlings and plants of Cucumis sativus L.’. Plant Sci, 1993, 91: 171–179.

  14. GUIS M, BEN AMOR M, LATCHÉ A, PECH JC, ROUSTAN JP, ‘A reliable system for the transformation of cantaloupe charentais melon (Cucumis melo L. var. cantalupensis) leading to a majority of diploid regenerants’. Scientia Hort, 1999, 84: 91–99.

  15. SCHULZE J, BALKO C, ZELLNER B, KOPREK T, HANSCH R, NERLICH A, MENDEL RR, ‘Biolistic transformation of cucumber using embryogenic suspension cultures: long-term expression of reporter genes’. Plant Sci, 1995, 112: 197–206.

  16. GRAY DJ, HIEBERT E, KELLEY KT, COMPTON ME, GABA VP, ‘Comparison of methods to transform embryogenic cotyledons of melon’. Hort Sci, 1995, 30: 788.

  17. KATAVIC V, JELASKA S, BAKRAN-PETRICIOLI T, DAVID C, ‘Host-tissue differences in transformation of pumpkin (Cucurbita pepo L.) by Agrobacterium rhizogenes’. Plant Cell Tissue Organ Cult, 1991, 24: 35–42.

  18. TOPPI LSD, PECCHIONI N, DURANTE M, ‘Cucurbita pepo L. can be transformed by Agrobacterium rhizogenes’. Plant Cell Tissue Organ Cult, 1997, 51: 89–93.

  19. CHEN W, CHIU C, LIU H, LEE T, CHENG J, LIN C, WU Y, CHANG H, ‘Gene transfer via pollen-tube pathway for anti F-usarium wilt in watermelon’. Biochem Mol Biol Int, 1998, 46: 1201–1209.

  20. PROVVIDENTI R, ‘Viral diseases of cucurbits and sources of resistance’. Technical Bulletin, Food and Fertiliz Technol Center, Taipei, Taiwan, 1986, 93.

  21. ZITTER T, HOPKINS DL, THOMAS CE, (eds) Compendium of Cucurbit Diseases. APS Press, St. Paul, Minnesota 1996, 87pp.

  22. CHEE PP, SLIGHTOM JL, ‘Transfer and expression of cucumber mosaic virus coat protein gene in the genome of Cucumis sativus’. J Am Soc Hort Sci, 1991, 116: 1098–1102.

  23. GONSALVES D, CHEE P, PROVVIDENTI R, SEEM R, SLIGHTON JL, ‘Comparison of coat protein-mediated and genetically-derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions with natural challenge inoculations by vectors’. Bio/Technol, 1992, 10: 1562–1570.

  24. YOSHIOKA K, HANADA K, HARADA T, MINORE Y, OOSAWA K, ‘Virus resistance in transgenic melon plants that express the cucumber mosaic virus coat protein gene and in their progeny’. Jpn J Breed, 1993, 43: 629–634.

  25. GONSALVES C, XUE B, YEPES M, FUCHS M, LING K, NAMBA S, CHEE P, SLIGHTOM JL, GONSALVES D, ‘Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections’. J Am Soc Hort Sci, 1994, 119: 345–355.

  26. CLOUGH GH, HAMM PB, ‘Coat protein transgenic resistance to watermelon mosaic and zucchini yellows mosaic virus in squash and cantaloupe’. Plant Dis, 1995, 79: 1107–1109.

  27. TRICOLI DM, CARNEY KJ, RUSSELL PF, MCMASTER JR, GROFF DW, HADDEN KC, HIMMEL PT, HUBBARD JP, BOESHORE ML, QUEMADA HD, ‘Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus 2, and zucchini yellow mosaic virus’. Bio/Technol, 1995, 13: 1458–1465.

  28. FUCHS M, MCFERSON JR, TRICOLI DM, MCMASTER JR, DENG RZ, BOESHORE ML, REYNOLDS JF, RUSSELL PF, QUEMADA HD, GONSALVES D, ‘Cantaloupe line CZW-30 containing coat protein genes of cucumber mosaic virus, zucchini yellow virus, and watermelon mosaic virus-2 is resistant to these three viruses in the field’. Molecular Breeding, 1997, 3: 279–290.

  29. FUCHS M, GONSALVES D, ‘Resistance of transgenic hybrids squash ZW-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus-2 to mixed infections by both potyviruses’. Bio/Technol, 1995, 13, 1466–1473.

  30. ARCE-OCHOA JP, DAINELLO F, PIKE LM, DREWS D, ‘Field performance comparison of two transgenic summer squash hybrids to their parental hybrid line’. Hort Sci, 1995, 30: 492–493.

  31. PLAGES JN, ‘L’avenir des variétés génétiquement modifiées pour la résistance aux virus (un exemple développépar Lima grain)’. CR Acad Agric Fr, 1997, 83: 161–164.

  32. CANTO T, PALUKAITIS P, ‘Transgenically expressed cucumber mosaic virus RNA1 simultaneously complements replication of cucumber mosaic virus RNAs2 ans 3 confers resistance to systemic infection’. Virology, 1998, 250: 325–336.

  33. WINTERMANTEL WM, ZAITLIN M, ‘Transgene translatability increases effectiveness of replicase-mediated resistance to cucumber mosaic virus’. J Gen Virol, 2000, 81: 587–595.

  34. KOMADA H, EZUKA A, ‘Varietal resistance to Fusarium wilt in cucumber’. Bull Veg Ornament Crops Res Stn Jpn Ser, 1974, A1: 233–245.

  35. PUNJA ZK, RAHARJO SHT, ‘Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with fungal pathogens’. Plant Dis, 1996, 80: 999–1005.

  36. BRAY EA, ‘Plant responses to water deficit’. Trends Plant Sci, 1997, 2: 48– 54.

  37. BORDAS M, MONTESINOS C, DABAUZA M, SALVADOR A, ROIG LA, SERRANO R, MORENO V, ‘Transfer of the yeast salt tolerance gene HAL1 to Cucumismelo L. cultivars and in vitro evaluation of salt tolerance’. Transgenic Res, 1997, 6: 41–50.

  38. SERRANO R, CULIANZ-MACIA FA, MORENO V, ‘Genetic engineering of salt and drought tolerance with yeast regulatory genes’. Scientia Hort, 1999, 78: 261–269.

  39. CLENDENNEN SK, KELLOGG JA, WOLFF KA, MATSUMURA W, PETERS S, VANWINKLE JE, COPES B, PIEPER M, KRAMER MG, ‘Genetic engineering of cantaloupe to reduce ethylene biosynthesis and control ripening’. In: Kanellis AK, Klee CCH, Bleecker AB, Pech JC, Grierson D, (eds) Biologyand Biotechnology of the Plant Hormone Ethylene II, pp. 371–379. Kluwer Academic Publishers, Dordrecht, The Netherlands 1999.

  40. BALAGUÉC, WATSON CF, TURNER AJ, ROUGEP, PICTON S, PECH JC, GRIERSON D, ‘Isolation of a ripening and wound-induced cDNA from Cucumis melo L. encoding a protein with homology to the ethylene-forming enzyme’. Eur J Biochem, 1993, 212: 27–34.

  41. AYUB R, GUIS M, BEN AMOR M, GILLOT L, ROUSTAN JP, LATCHÉA, BOUZAYEN M, PECH JC, ‘Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits’. Nature Biotech, 1996, 14: 862–866.

  42. GUISM, BOTONDI R, BEN-AMORM, AYUB R, BOUZAYENM, PECHJC, LATCHÉA, ‘Ripening-associated biochemical traits of Cantaloupe Charentais melons expressing an antisense ACC oxidase transgene’. J Am Soc Hort Sci, 1997, 122: 748–751.

  43. BAUCHOT A, MOTTRAM D, DODSON A, JOHN P, ‘Effect of antisense ACC oxidase on the formation of volatile esters in Cantaloupe Charentais melons (Cv. Védrantais)’. J Agric Food Chem, 1998, 46: 4787–4792.

  44. BEN AMOR M, FLORES B, LATCHÉA, BOUZAYEN M, PECH JC, ROMOJARO F, ‘Inhibition of ethylene biosynthesis by antisense ACC oxidase RNA prevents chilling injury in Charentais Cantaloupe melons’. Plant Cell Environ, 1999, 22: 1579–1586.

  45. SMITH PG, ‘Horticultural classification of peppers grown in the United States’. Hort Sci, 1987, 22: 11–13.

  46. STEINITZ B, WOLF D, MATZEVITCH-JOSEF T, ZELCER A, ‘Regeneration in vitro and genetic transformation of pepper (Capsicum spp.): the current state of the art’. Capsicum & Eggplant Newsletter, 1999, 18: 9–15.

  47. OCHOA-ALEJO N, IRETA-MORENO ML, ‘Cultivar differences in shoot forming capacity of hypocotyl tissues of chilli pepper (Capsicum annuum L.) cultured in vitro’. Scientia Hort, 1990, 42: 21–28.

  48. SZASZ A, NERVO G, FARI M, ‘Screening for in vitro shoot-forming capacity of seedling explants in bell pepper’, Plant Cell Rep, 1995,14: 666–669.

  49. MORRISON RA, KONING RE, EVANS DA, Pepper. In: Evans DA, Sharp WR, Ammirato PV (eds) Handbook of Plant Culture, pp. 552–573. Macmillan, New York 1986.

  50. FARI M, CZAKO M, ‘Relationship between position and morphogenetic response of pepper hypocotyl explants cultured in vitro’, Scientia Hort, 1981, 15: 207–213.

  51. ZHU Y, OUYANG W, ZHANG Y, CHEN Z, ‘Transgenic sweet pepper plants from Agrobacterium mediated transformation’. Plant Cell Rep, 1996, 16: 71–75.

  52. ARROYO R, REVILLA MA, ‘In vitro plant regeneration from cotyledon and hypocotyl segments in two bell pepper cultivars’. Plant Cell Rep, 1991, 10: 414–416.

  53. FARI M, TURI Z, CSILLAG F, ‘Comparative studies on in vitro regeneration of seedling explants in chili pepper (Capsicum annuum L.)’. Acta Hort, 1990, 280: 131–134.

  54. DIAZ I, MORENO R, POWER JB, ‘Plant regeneration from protoplasts of Capsicum annuum’. Plant Cell Rep, 1988, 7: 210–212.

  55. HARINI I, LAKSHMI SITA G, ‘Direct somatic embryogenesis and plant regeneration from immature embryos of chilli (Capsicum annuum L.)’. Plant Sci, 1993, 89: 107–112.

  56. BINZEL ML, SANKHLA N, JOSHI S, SANKHLA D, ‘Induction of direct somatic embryogenesis and plant regeneration in pepper (Capsicum annuum L.)’. Plant Cell Rep, 1996, 15: 536–540.

  57. LIU W, PARROTT WA, HILDEBRAND DF, COLLINS GB, WILLIAMS EG, ‘Agrobacterium-induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes’. Plant Cell Rep, 1990, 9: 360–364.

  58. SZASZ A, MITYKO J, ANDRASFALVY A, FARI M, ‘Methodological and genetic aspects of in vitro plant regeneration and genetic transformation of the recalcitrant pepper (Capsicum annuum L.)’. Acta Hort, 1997, 447: 365–366.

  59. MANOHARAN M, VIDYA CSS, SITA GL, ‘Agrobacterium-mediated genetic transformation in hot chilli (Capsicum annuum L. var. Pusa Jwala)’. Plant Sci, 1998, 131: 77–83.

  60. LIM H, LEE G, YOU Y, PARK E, SONG Y, YANG D, CHOI K, ‘Regeneration and genetic transformation of hot pepper plants’. Acta Hort, 1999, 483: 387–396.

  61. TSAFTARIS A, ‘The development of herbicide-tolerant transgenic crops’. Field Crops Research, 1996, 45: 115–123.

  62. KIM SJ, LEE SJ, KIM BD, PAEK KH, ‘Satellite-RNA-mediated resistance to cucumber mosaic virus in transgenic plants of hot pepper (Capsicum annuum cv. Golden Tower)’. Plant Cell Rep, 1997, 16: 825–830.

  63. DERUE`RE J, BOUVIER F, STEPPUHN J, KLEIN A, CAMARA B, KUNTZ M, ‘Structure and expression of two plant genes encoding chromoplastspecific proteins: occurrence of partially spliced transcripts’. Biochem Biophys Res Commun, 1994, 199: 1144–1150.

  64. DERUE`RE J, RÖMER S, D’HARLINGUE A, BACKHAUS RA, KUNTZ M, CAMARA B, ‘Fibril assembly and carotenoid over accumulation in chromoplasts: a model for supra molecular lipoprotein structures’. Plant Cell, 1994, 6: 119–133.

  65. KUNTZ M, CHEN HC, SIMKIN AJ, RÖMER S, SHIPTON CA, DRAKE R, SCHUCH W, BRAMLEY PM, ‘Upregulation of two ripening-related genes from a nonclimacteric plant (pepper) in a transgenic climacteric plant (tomato)’. Plant J, 1998, 13: 351–361.

  66. GURI A, SINK KC, ‘Agrobacterium transformation of eggplant’. J Plant Physiol, 1988, 133: 52–55.

  67. ROTINO GL, GLEDDIE S, ‘Transformation of eggplant (Solanum melongena L.) is using a binary Agrobacterium tumefaciens vector’. Plant Cell Rep, 1990, 9: 26–29.

  68. ROTINO GL, ARPAIA S, IANNACONE R, IANNAMICO V, MENNELLA G, ONOFANO V, PERRONE D, SUNSERI F, XIKE Q, SPONGA S, Agrobacterium-mediated transformation of Solanum spp. using a Bacillus thuringiensis gene against coleopteran. Proc. VIIIth Meeting Genetics and Breeding on Capsicum and Eggplant, Rome, Italy, 1992, pp. 295–300.

  69. BILLINGS S, JELENKOVIC G, CHIN C-K, EBERHARDT J, ‘The effect of growth regulators and antibiotics on eggplant transformation’. J Am Soc Hort Sci, 1997, 122: 158–162.

  70. LA PORTA N, BELLONI V, ROTINO GL, ‘Regeneration of transgenic eggplants (Solanum melongena L.) for a cysteine proteinase inhibitor’. Capsicum & Eggplant Newsletter, 1998, 17: 92–95.

  71. CHEN Q, JELENKOVIC G, CHEEKOK C, BILLINGS S, EBERHARDT J, GOFFREDA JC, DAY P, ‘Transfer and transcriptional expression of coleopteran Cry IIIB endotoxin gene of Bacillus thuringiensis in eggplant’. J Am Soc Hort Sci, 1995, 120: 921–927.

  72. JELENKOVIC G, BILLINGS S, QI C, LASHOMB J, HAMILTON G, GHIDIU G, ‘Transformation of eggplant with synthetic Cry IIIA gene produces a high level of resistance to the Colorado potato beetle’. J Am Soc Hort Sci, 1998, 123: 19–25.

  73. ASHFAQ FAROOQUI M, RAO AV, JAYASREE T, SADANANDAM A, ‘Induction of atrazine resistance and somatic embryo genes is in Solanum melongena’. Theor Appl Genet, 1997, 95: 702–705.

  74. MCGAUGHEY WH, WALON ME, ‘Managing insect resistance to Bacillus thuringiensis’. Science, 1992, 128: 1451–1455.

  75. ARPAIA S, MENNELLA G, ONOFARO V, PERRI E, SUNSERI F, ROTINO GL, ‘Production of transgenic eggplant (Solanum melongena L.) resistant to Colorado Potato Beetle (Leptinotarsa decemlineata Say)’. Theor Appl Genet, 1997, 95: 329–334.

  76. ARPAIA S, ACCIARRI N, LEO GMD, MENNELLA G, SABINO G, SUNSERI F, ROTINO GL, Field performance of Bt-expressing transgenic eggplant lines resistant to colorado potato beetle. Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant, Avignon, France 1998, pp. 191–194.

  77. KUMAR PA, MANDAOKAR A, SREENIVASU K, CHAKRABARTI SK, BISARIA S, SHARMA SR, KAUR S, SHARMA RP, ‘Insect-resistant transgenic brinjal plants’. Molecular Breeding, 1998, 4: 33–37.

  78. RYAN CA, ‘Protease inhibitors in plants genes for improving defenses against insects and pathogens’. Ann Rev Phytopathol, 1990, 28: 425–449.

  79. DONZELLA G, SPENA A, ROTINO GL, ‘Transgenic parthenocarpic eggplants: superior germplasm for increased winter production’. Molecular Breeding, 2000, 6: 79–86.

  80. ROTINO GL, PERRI E, ACCIARRI N, SUNSERI F, ARPAIA S, ‘Development of eggplant varietal resistance to insects and diseases via plant breeding’. Adv Hort Sci, 1997, 11: 193–201.

  81. YAMADA T, PALM CJ, BROOKS B, KOSUGE T, ‘Nucleotide sequence of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA’. Proc Natl Acad Sci USA, 1985, 82: 6522–6526.

  82. CHRISTOU P, ‘Biotechnology applied to grain legumes’. Field Crops Research, 1997, 53: 83–97.

  83. NICOLL SM, BRIGHAM LA, FUSHI W, HAWES MC, ‘Expression of transferred genes during hairy root development in pea’. Plant Cell Tissue Organ Cult, 1995, 42: 57–66.

  84. PUONTI-KAERLAS J, OTTOSSON A, ERICKSSON T, ‘Survival and growth of pea protoplasts after transformation by electroporation’. Plant Cell Tissue Organ Cult, 1992, 30: 141–148.

  85. PUONTI- KAERLAS J, ERIKSSON T, ENGSTROM P, ‘Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens-mediated gene transfer’. Theor Appl Genet, 1990, 80: 246–252.

  86. PUONTI-KAERLAS J, ERIKSSON T, ENGSTROM P, ‘Inheritance of a bacterial hygromycin phosphotransferase gene in the progeny of primary transgenic pea plants.’ Theor Appl Genet, 1992, 84: 443–450.

  87. SCHROEDER H, SCHOTZ A, WARDLEY-RICHARDSON T, SPENCER D, HIGGINS T, ‘Transformation and regeneration of two cultivars of pea (Pisum sativum L)’. Plant Physiol, 1993, 101: 751–757.

  88. GRANT JE, COOPER PA, MCARA AE, FREW TJ, ‘Transformation of peas (Pisum sativum L.) using immature cotyledons’. Plant Cell Rep, 1995, 15: 254– 258.

  89. GRANT J, PITHER-JOYCE M, FIFIELD W, COOPER P, TIMMERMAN-VAUGHAN G, ‘Partial resistance to alfalfa mosaic virus in transgenic pea (Pisum sativum L.)’. 3rd European conference on grain legumes. Opportunities for high quality, healthy and added value crops to meet European demands, Valladolid, Spain (1998).

  90. DAVIES DR, HAMILTON J, MULTINEAUX P, ‘Transformation of peas’. Plant Cell Rep, 1993, 12: 180–183.

  91. BEAN SJ, GOODING PS, MULLINEAUX PM, DAVIES DR, ‘A simple system for pea transformation’. Plant Cell Rep, 1997, 16: 513–519.

  92. BABAOGLU M, DAVEY MR, POWER JB, ‘Genetic engineering of grain legumes: key transformation events’. Ag Biotech Net, 2000, 2.

  93. MARIOTTI D, FONTANA GS, SANTINI L, ‘Genetic transformation of grain legumes: Phaseolus vulgaris L. and P. coccineus L’. J Genet Breed, 1989,43: 77–82.

  94. MCCLEAN P, CHEE P, HELD B, SIMENTAL J, DRONG RF, SLIGHTOM J, ‘Susceptibility of dry bean (Phaseolus vulgaris L.) Agrobacterium infection: Transformation of cotyledonary and hypocotyl tissues’. Plant Cell Tissue Organ Cult, 1991, 24: 131–138.

  95. ZHANG Z, DERMOT P, COYNE, MITRA A, ‘Factors affecting Agrobacterium mediated transformation of common bean’. J Am Soc Hort Sci, 1997,122: 300–305.

  96. LEWIS ME, BLISS FA, ‘Tumor formation and β-glucuronidase expression in Phaseolus vulgaris inoculated with Agrobacterium tumefaciens’. J Am SocHort Sci, 1994, 119: 361–366.

  97. CHRISTOU P, MCCABE DE, MARTINELL BJ, SWAIN WF, ‘Soybean genetic engineering – commercial production of transgenic plants’. Trends Biotechnol, 1990, 8: 145–151.

  98. WALLACE, KM, BATHE JH, MARTINELL BJ, MCCABE DE, ‘Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration’. Plant Cell Rep, 1993, 12: 165–169.

  99. KIM JW, MINAMIKAWA T, ‘Transformation and regeneration of French bean plants by the particle bombardment process’. Plant Sci, 1996, 117: 131–138.

  100. ARAGAO FJL, BARROS LMG, BRASILEIRO ACM, RIBEIRO SG, SMITH FD, SANFORD JC, FARIA JC, RECH EL, ‘Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment’. Theor Appl Genet, 1996, 93: 142–150.

  101. ARAGAO FJL, RIBEIRO SG, BARROS LMG, BRASILEIRO ACM, MAXWELL DP, RECH EL, FARIA JC, ‘Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic gemini virus’. Molecular Breeding, 1998,4: 491–499.

  102. SAALBACH I, WADDELL D, PICKARDT T, SCHIEDER O, MUNTZ K, ‘Stable expression of the sulphur-rich 2S albumin gene in transgeVnicicia narbonensis increases the methionine content of seeds’. J Plant Physiol, 1995, 145: 674–681.

  103. PICKARDT T, SAALBACH I, WADDELL D, MEIXNER MG, MUNTZ K, SCHIEDER O, ‘Seed specific expression of 2S albumin gene from Brazil nut (Bertholletia excelsa) in transgenic Vicia’. Molecular Breeding, 1995, 1: 295–301.

  104. BHARGAVA SC, SMIGOCKI AC, ‘Transformation of tropical grain legumes using particle bombardment.’ Current Science, 1994, 66: 439–442.

  105. KARTHIKEYAN AS, SARMA KS, VELUTHAMBI K, ‘Agro bacterium tumefaciens-mediated transformation of Vigna mungo L. Hepper’. Plant Cell Rep, 1996, 15: 328–331.

  106. JAIWAL PK, SAUTTER C, POTRYKUS I, ‘Agrobacterium rhizogenes-mediated gene transfer in mungbean’. Current Science, 1998, 75: 41–45.

  107. PENZA R, LURQUIN PF, FILIPPONE E,‘Gene transfer by cocultivation of mature embryos withAgrobacterium tumefaciens: application to cowpea (Vigna unguiculata Walp.)’. J Plant Physiol, 1991, 138: 39–42.

  108. POTRYKUS I, ‘Gene transfer to plants: assessment and perspectives’. Physiol Plant, 1990, 79: 125–134.

  109. CHOWRIRA GM, AKELLA V, FUERST PE, LURQUIN PF, ‘Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer’. Molecular Biotechnology, 1996, 5: 85–96.

  110. WARKENTIN TD, MCHUGHEN A, ‘Crown gall transformation of lentil (Lens culinaris Medik.) with virulent strains of Agro bacterium tumefaciens’. Plant Cell Rep, 1991, 10: 489–493.

  111. WARKENTIN TD, MCHUGHEN A, ‘Agrobacterium tumefaciens-mediated betaglucoronidase  (GUS) gene expression in lentil (Lens culinaris Medik.) tissues’. Plant Cell Rep, 1992, 11: 274–278.

  112. OKTEM HA, MAHMOUDIAN M, EYIDODAN F, YUCEL M, ‘GUS gene delivery and expression in lentil cotyledonary nodes using particle bombardment’. Lens Newsletter, 1999, 26: 3–6.

  113. FONTANA GS, SANTINI L, CARETTO S, FRUGIS G, MARIOTTI D, ‘Genetic transformation in the grain legume Cicer arietinum L. (chick pea)’.Plant Cell Rep, 1993, 12: 194–198.

  114. KAR S, JOHNSON TM, NAYAK P, SEN SK, ‘Efficient transgenic plant regeneration through Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.)’. Plant Cell Rep, 1996, 16: 32–37.

  115. KRISHNAMURTHY KV, SUHASINI K, SAGARE AP, MEIXNER M, KATHEN AD, PICKARDT T, SCHIEDER O, ‘Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) embryo axes’. Plant Cell Rep, 2000, 19: 235–240.

  116. ALTINKUT A, GOZUKIRMIZ N, BAJROVIC K, GOZUKIRMIZI N, ‘High percentage of regeneration and transformation in chickpea Acta Hort, 1997,447: 319–320.

  117. KAR S, BASU D, DAS S, RAMKRISHNAN NA, MUKHERJEE P, NAYAK P, SEN SK, ‘Expression of Cry IA(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of podborer (Heliothis armigera) larvae’. Transgenic Res, 1997, 6: 177–185.

  118. KUNIT T, SALOMON R, ZAMIR D, NAVOR N, ZEIDAN M, MICHELSON I, GAFNI Y, CZOSNEK H, ‘Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus’. Bio/Technol, 1994, 12:
    500–504.

  119. CHOWRIRA GM, CAVILEER TD, GUPTA SK, LURQUIN PF, BERGER PH, ‘Coat protein-mediated resistance to pea enation mosaic virus in transgenic Pisum sativum L’. Transgenic Res, 1998, 7: 265–271.

  120. SHADE RE, SCHROEDER HE, PUEYO JL, TABE LM, MURDOCK LL, HIGGINS TJV, CHRISPEELS MJ, ‘Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles’. Bio/Technol, 1994, 12: 793–796.

  121. SCHROEDER HE, GOLLASCH S, MOORE A, TABE LM, CRAIG S, HARDIE DC, CHRISPEELS MJ, SPENCER D, HIGGINS TJV, ‘Bean alpha-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.)’. Plant Physiol, 1995, 107: 1233–1239.

  122. MORTON RL, SCHROEDER HE, BATEMAN KS, CHRISPEELS MJ, ARMSTRONG E, HIGGINS TJV, ‘Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under filed conditions’. Proc Natl Acad Sci USA, 2000, 97: 3820–3825.

  123. CHARITY JA, ANDERSON MA, BITTISNICH DJ, WHITECROSS M, HIGGINS TJV, ‘Transgenic tobacco and peas expressing a proteinase inhibitor fromNicotiana alata have increased insect resistance’. Molecular Breeding, 1999, 5: 357–365.

  124. MA Y, BLISS FA, ‘Seed proteins in bean’. Crop Sci, 1978, 18: 431–437.

  125. ALTENBACH SB, PEARSON KW, LEUNG FW, SUN SSM, ‘Cloning and sequence analysis of a cDNA encoding a Brazil nut protein exceptionally rich in methionine’. Plant Mol Biol, 1987, 8: 239–250.

  126. GANDER ES, HOLMSTROEM KO, DE PAIVA GR, DE CASTRO LAB, CARNEIRO M, GROSSI DE SA MF, ‘Isolation characterization and expression of a gene coding for a 2S albumin from Bertholletia excelsa (Brazil nut)’. Plant Mol Biol, 1991, 16: 437–448.

  127. ARAGAO FJL, BARROS LMG, SOUSA MVD, GROSSI DE SA MF, ALMEIDA ERP, GANDER ES, RECH EL, ‘Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae)’.Genet Mol Biol, 1999, 22: 445–449.

  128. PICKARDT T, MEIXNERM, SCHADEV, SCHIEDERO, ‘Transformation of Vicia narbonensis via Agrobacterium-mediated gene transfer’. Plant Cell Rep, 1991, 9: 535–538.

  129. NORDLEE JA, TAYLOR SL, TOWNSEND JA, THOMAS LA, BUSH RK, ‘Identification of a brazil nut-allergen in transgenic soybeans’. New England J Med, 1996, 334: 688–692.

  130. OSBORN TC, ALEXANDER DC, SUN SSM, CARDONA C, BLISS FA, ‘Insectidal activity and lectin homology of arcelin seed protein’. Science, 1989,240: 207–210.

  131. PRATT RC, SINGH NK, SHADE RE, MURDOCK LL, BRESSAN RA, ‘Isolation and partial characterisation of a seed lectin from tepary bean that delays bruchid beetle development’. Plant Physiol, 1990, 93: 1453–1459.

  132. EDWARDS GA, HEPHER A, CLERK SP, BOULTER D, ‘Pea lectin is correctly processed, stable and active in leaves of transgenic potato plants’. Plant Mol Biol, 1991, 17: 89–100.

  133. HILDER VA, GATEHOUSE AMR, SHEERMAN SE, BARKER RF, BOULTER D, ‘A novel mechanism of insect resistance engineered into tobacco’. Nature, 1987, 300: 160–163.

  134. NEWELL CA, LOWE JM, MERRYWEATHER A, ROOKE LM, HAMILTON WDO, ‘Transformation of sweet potato (Ipomoea batatas (L.) Lam.) with Agrobacterium tumefaciens and regeneration of plants expressing cowpea trypsin inhibitor and snowdrop lectin’. Plant Sci, 1995, 107: 215–227.

  135. SINDHU AS, ZHENG Z, MURAI N, ‘The pea storage protein legumin was synthesized, processed, and accumulated stably in transgenic rice endosperm’. Plant Sci, 1997, 130: 189–196.

  136. RIGGS CD, HUNT DC, LIN J, CHRISPEELS MJ, ‘Utilization of luciferase fusion genes to monitor differential regulation of phytohemagglutinin and phaseolin promoters in transgenic tobacco’. Plant Sci, 1989, 63: 47–57.

  137. ALTABELLA T, CHRISPEELS MJ, ‘Tobacco plants transformed with the bean aai gene express an inhibitor of insect a-amylase in their seeds’. Plant Physiol, 1990, 93: 805–810.

  138. GOOSSENS A, DILLEN W, CLERCQ JD, MONTAGU MV, ANGENON G, ‘The arcelin-5 gene of Phaseolus vulgaris directs high seed-specific expression in transgenic Phaseolus acutifolius and Arabidopsis plants’. Plant Physiol, 1999, 120: 1095–1104.

  139. PATER SD, PHAM K, CHUA NH, MEMELINK J, KIJNE J, ‘A 22-bp fragment of the pea lectin promoter containing essential TGAC-like motifs confers seed specific gene expression.’ Plant Cell, 1993, 5: 877–886.

  140. MANDACI S, DOBRES MS, ‘A promoter directing epidermal expression in transgenic alfafa’. Plant Mol Biol, 1997, 34: 961–965.

  141. DE VRIES SC, BOOIJ H, MEYERINK P, HUISMAN G, WILDE DH, THOMAS TL, KAMMEN AV, ‘Acquisition of embryogenic potential in carrot cellsuspension cultures’. Planta, 1988, 176: 196–204.

  142. BALESTRAZZI A, CARBONERA D, CELLA R, ‘Transformation of Daucus carota hypocotyls mediated by Agro bacterium tumefaciens’. J Genet Breed, 1991, 45: 135–140.

  143. PAWLICKI N, SANGWAN-NORREEL B, ‘Factors influencing the Agro- bacterium tumefaciens-mediated transformation of carrot (Daucus carota L.)’. Plant Cell Tissue Organ Cult, 1992, 31: 129–139.

  144. SCOTT R, DRAPER J, ‘Transformation of carrot tissues derived from proembryogenic suspension cells: a useful model system for gene expression studies in plants’. Plant Mol Biol, 1987,8: 265–274.

  145. THOMAS J, GUILTINAN M, BUSTOS S, THOMAS T, NESSLER C, ‘Carrot (Daucus carota) hypocotyl transformation using Agrobacterium tumefaciens’. Plant Cell Rep, 1989, 8: 354–357.

  146. WURTELE E, BULKA K, ‘A simple, efficient method for the Agro bacterium mediated transformation of carrot callus cells’. Plant Sci, 1989, 61: 253–262.

  147. HARDEGGER M, STURM A, ‘Transformation and regeneration of carrot (Daucus carota L.)’. Molecular Breeding, 1998, 4: 119–127.

  148. TANG GQ, STURM A, ‘Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning’. Plant Mol Biol, 1999, 41: 465–479.

  149. TANG GQ, LUSCHER M, STURM A, ‘Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning’. Plant Cell, 1999, 11: 177–189.

  150. GILBERT MO, ZHANG YY, PUNJA ZK, ‘Introduction and expression of chitinase encoding genes in carrot following agro bacterium-mediated transformation’. In Vitro Cell Dev Biol, 1996, 32: 171–178.

  151. NISHIGUCHI M, UEHARA Y, KOMAKI K, ‘Stable transformation of sweet potato by electroporation’. In Vitro Cell Dev Biol, 1992, 28: 126.

  152. PRAKASH CS, VARADARAJAN U, ‘Genetic transformation of sweet potato by particle bombardment’. Plant Cell Rep, 1992, 11: 53–57.

  153. OTANI M, MII M, HANDA T, KAMADA H, SHIMADA T, ‘Transformation of sweet potato (Ipomoea batatas L. Lam.) plants by Agro bacterium rhizogenes’. Plant Sci, 1993, 94: 151–159.

  154. GAMA MICS, LEITRE RP, JR., CORDEIRO AR, CANTLIFFE DJ, ‘Transgenic sweet potato plants obtained by Agro bacterium tumefaciens-mediated transformation’. Plant Cell Tissue Organ Cult, 1996, 46: 237–244.

  155. MORAN R, GARCIA R, LOPEZ A, ZALDUA Z, MENA J, GARCIA M, ARMAS R, SOMONTE D, RODRIGUEZ J, GOMEZ M, PIMENTEL E, ‘Transgenic sweet potato plants carrying the delta-endotoxin gene from Bacillus thuringiensis var. tenebrionis’. Plant Sci, 1998, 139: 175–184.

  156. CHÉE RP, CANTLIFFE DJ, ‘Somatic embryony patterns and plant regeneration in Ipomoeas batatas Poir.’. In Vitro Cell Dev Biol, 1988, 24: 955–958.

  157. DOMMISSE EM, LEUNG DWM, SHAW ML, CONNER AJ, ‘Onion is a monocotyledonous host for Agro bacterium’. Plant Sci, 1990, 69: 249–257.

  158. BARANDIARAN X, MARTIN N, RODRIGUEZ-CONDE MF, DI PIETRO A, MARTIN J, ‘An efficient method for callus culture and shoot regeneration of garlic (Allium sativum L.)’. HortSci, 1999, 34: 348–349.

  159. BUITEVELD J, FRANSZ PF, CREEMERS-MOLENAAR J, ‘Induction and characterization of embryogenic callus types for the initiation of suspension cultures of leek (Allium ampeloprasum L.)’. Plant Sci, 1994, 100: 195–202.

  160. BUITEVELD J, CREEMERS-MOLENAAR J, ‘Plant regeneration from protoplasts isolated from suspension cultures of leek (Allium ampeloprasum L.)’. Plant Sci, 1994, 100: 203–210.

  161. HINCHEE M, ‘Development of virus-resistant sweet potato’. In: International C (ed.) Agricultural Biotechnology in International Development, Wallingford, UK 1998.

  162. GOGARTEN JP, FICHMANN J, BRAUN Y, MORGAN L, STYLES P, DELAPP K, TAIZ L, ‘The use of antisense mRNA to inhibit the tonoplast H+ ATPase in carrot’. Plant Cell, 1992, 4: 851–864.

  163. MALIK MK, SLOVIN JP, HWANG CH, ZIMMERMAN JL, ‘Modified expression of a carrot small heat shock protein gene, Hsp 17.7, results in increased or decreased thermo tolerance’. Plant J, 1999, 20: 89–99.

  164. DING LC, HU CY, ‘Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato’. Plant Cell Rep, 1998, 17: 854–860.

  165. PUDDEPHAT IJ, RIGGS TJ, FENNING TM, ‘Transformation of Brassica oleracea L. a critical review’. Molecular Breeding, 1996, 2: 185–210.

  166. CHRISTEY MC, SINCLAIR BK, BRAUN RH, WYKE L, ‘Regeneration of transgenic vegetable brassicas (Brassica aleracea and B. campestris) via Ri-mediated transformation’. Plant Cell Rep, 1997, 16: 587–593.

  167. DE BLOCK M, DE BROUWER D, TENNING P, ‘Transformation of Brassica napus and Brassica aleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants’. Plant Physiol, 1989, 91: 694–701.

  168. BHALLA L, SMITH NA, ‘Agrobacterium tumefaciens-mediated transformation of cauliflower, Brassica oleracea var. botrytis’. Molecular Breeding, 1998, 4: 531–541.

  169. METZ TD, DIXIT R, EARLE ED, ‘Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata)’. Plant Cell Rep, 1995, 15: 287–292.

  170. TORIYAMA K, STEIN JC, NASRALLAH ME, NASRALLAH JB, ‘Transformation of Brassica oleracea with an S-locus gene from B. campestris changes the self-incompatibility phenotype’. Theor Appl Genet, 1991, 81: 769–776.

  171. METZ TD, ROUSH RT, TANG JD, SHELTON AM, EARLE ED, ‘Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies’. Mesolecular Breeding, 1995, 1: 309–317.

  172. CAO J, TANG JD, ‘Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C’. Molecular Breeding, 1999, 5: 131–141.

  173. HENZI MX, CHRISTEY MC, MCNEIL DL, DAVI ES KM, ‘Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica) with an antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene’. Plant Sci, 1999, 143: 55–62.

  174. HENZI MX, MCNEIL DL, CHRISTEY MC, LILL RE, ‘A tomato antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene causes reduced ethylene production in transgenic broccoli’. Aust J Plant Physiol, 1999, 26: 179–183.

  175. JUN SI, KWON SY, ‘Agro bacterium-mediated transformation and regeneration of fertile transgenic plants of chinese cabbage (Brassica campestris ssp. pekinensis cv. ‘‘Spring Flavor’’. Plant Cell Rep, 1995, 14: 620–625.

  176. LIM HT, YOU YS, PARK EJ, SONG YN, ‘High plant regeneration genetic stability of regenerants and genetic transformation of herbicide resistance gene (Bar) in chinese cabbage (Brassica campestris ssp. pekinensis)’. Acta Hort, 1998, 459: 199–208.

  177. MICHELMORE R, MARSH E, SEELY S, LANDRY B, ‘Transformation of lettuce (Lactuca sativa) mediated by Agro bacterium tumefaciens’. Plant Cell Rep, 1987, 6: 439–442.

  178. PANG SZ, JAN FJ, CARNEY K, STOUT J, TRICOLI DM, QUEMADA HD, GONSALVES D, ‘Post-transcriptional transgene silencing and consequent tospovirus resistance in transgenic lettuce are affected by transgene dosage and plant development’. Plant J, 1996, 9: 899–909.

  179. CHUPEAU MC, BELLINI C, GUERCHE P, MAISONNEUVE B, VASTRA G, CHUPEAU Y, ‘Transgenic plants of lettuce (Lactuca sativa) obtained through electroporation of protoplasts’. Bio/Technol, 1989, 7: 503–508.

  180. DINANT S, MAISONNEUVE B, ALBOUY J, CHUPEAU Y, CHUPEAU MC, BELLEC Y, GAUDEFROY F, KUSIAK C, SOUCHE S, ROBAGLIA C, Lot H, ‘Coat protein gene-mediated protection in lactuca sativa against lettuce möscaı potyvirus strains’. Molecular Breeding, 1997, 3: 75–86.

  181. CURTIS IS, POWER JB, BLACKHALL NW, DE LAAT AMM, DAVEY MR, ‘Genotype-independent transformation of lettuce using Agro bacterium tumefaciens’. J Exp Bot, 1994, 45: 1441–1449.

  182. VERMEULEN A, VAUCHERET H, PAUTOT V, CHUPEAU Y, ‘Agrobacterium mediated transfer of a mutant Arabidopsis acetolactate synthase gene confers resistance to chlorsulfuron in chicor (Cyichorium intybus L.)’. Plant Cell Rep, 1992, 11: 243–247.

  183. AL-KHAYRI JM, HUANG FH, MORELOCK TE, ‘Regeneration of spinach from leaf callus’. Hort Sci, 1992, 26: 913–914.

  184. XIAO XG, BRANCHARD M, ‘Embryogenesis and plant regeneration of spinach (Spinacia oleracea L.) from hypocotyl segments’. Plant Cell Rep, 1993, 13: 69–71.

  185. MOLVIG L, ROSE RJ, ‘A regeneration protocol for Spinacia oleracea using gibberellic acid’. Aust J Bot, 1994, 42: 763–769.

  186. KNOLL KA, SHORT KC, CURTISIS, POWERJB, DAVEY MR, ‘Shoot regeneration from cultured root explants of spinach (Spinacia oleracea L.): a system for Agrobacterium transformation’. Plant Cell Rep, 1997, 17: 96–101.

  187. YANG YM, AL-KHAYRI JM, ANDERSON EJ, ‘Transgenic spinach plants expressing the coat protein of cucumber mosaic viruis’.  In Vitro Cell Dev Biol Plant, 1997, 33: 200–204.

  188. ZHANG HX, ZEEVAART JAD, ‘An efficient Agrobacterium tumefaciensmediated transformation and regeneration system for cotyledons of spinach (Spinacia oleracea L.)’. Plant Cell Rep, 1999, 18: 640–645.

  189. TO KY, CHENG MC, CHEN LFO, CHEN SCG, ‘Introduction and expression of foreign DNA in isolated spinach chloroplasts by electroporation’. Plant J, 1996, 10: 737–743.

  190. CONNER AJ, ABERNETHY DJ, ‘Genetic engineering of asparagus: assessment of methods, field testing and safety considerations’. Acta Hort, 1996,415: 51–58.

  191. BYTEBIER B, DEBOECK F, DE GREVE H, VAN MONTAGU M, HERNALSTEENS JP, ‘T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis’. Proc Natl Acad Sci USA, 1987, 84: 5345–5349.

  192. HERNALSTEENS JP, THIA-TOONG L, SCHELL J, VAN MONTAGU M, ‘An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis’. Embo J, 1984, 3: 3039–3041.

  193. DELBREIL B, GUERCHE P, JULLIEN M, ‘Agrobacterium-mediated transformation of Asparagus officinalis L. Long-term embryogenic callus and regeneration of transgenic plants’. Plant Cell Rep, 1993, 12: 129–132.

  194. MUKHOPADHYAY S, DESJARDINS Y, ‘Direct gene transfer to protoplasts of two genotypes of asparagus officinalis L. by electroporation’. Plant Cell Rep, 1994, 13: 421–424.

  195. GUANGYU C, CONNER AJ, FAUTRIER AG, FIELD RJ, ‘A shoot protoplast system for genetic manipulation of asparagus’. Asparagus Research Newsletter, 1996,13: 18–25.

  196. SAITO T, NISHIZAWA S, NISHIMURA S, ‘Improved culture conditions for somatic embryogenesis from Asparagus officinalis L. using an aseptic ventilative filter’. Plant Cell Rep, 1991,10: 230–234.

  197. LI B, WOLYN DJ, ‘Recovery of transgenic asparagus plants by particle gun bombardment of somatic cells’. Plant Sci, 1997,126: 59–68.

  198. CABRERA-PONCE JL, LOPEZ L, ASSAD-GARCIA N, MEDINA-AREVALO C, BAILEY AM, HERRERA-ESTRELLA L, ‘An efficient particle bombardment system for the genetic transformation of asparagus (Asparagus officinalis L.)’. Plant Cell Rep, 1997,16: 255–260.

  199. MCCABE MS, SCHEPERS F, VAN DER AREND A, MOHAPATRA U, DE LAAT AMM, POWER JB, DAVEY MR, ‘Increased stable inheritance of herbicide resistance in transgenic lettuce carrying a petE promoter-bar gene compared with a CaMV 35S-bar gene’. Theor Appl Genet, 1999,99: 587–592.

  200. PASSELE`GUE E, KERLAN C, ‘Transformation of cauliflower (Brassica oleracea var. botrytis) by transfer of cauliflower mosaic virus genes through combined cocultivation with virulent and avirulent strains of Agrobacterium’. Plant Sci, 1996,113: 79–89.

  201. YANG CH, CAROLL B, SCOFIELD S, JONES J, MICHELMORE R, ‘Trans activation of Ds elements in plants of lettuce (Lactuca sativa)’. Mol Gen Genet, 1993,241: 389–398.

  202. OKUBARA PA, ARROYO G, R., SHEN KA, MAZIER M, MEYERS BC, OCHOA OE, KIM S, YANG CH, MICHELMORE RW, ‘A transgenic mutant of lactuca sativa (lettuce) with a T-DNA tightly linked to loss of downy mildew resistance’. Molecular Plant Microbe Interactions, 1997,10: 970–977.

  203. CURTIS IS, POWER JB, DE LAAT AMM, CABOCHE M, DAVEY MR, ‘Expression of a chimeric nitrate reductase gene in transgenic lettuce reduces nitrate in leaves’. Plant Cell Rep, 1999,18: 889–896.

  204. GOTO F, YOSHIHARA T, SAIKI H, TAKAIWA F, SHIGEMOTO N, ‘Iron accumulation in transgenic plants expressing the soybean ferritin gene’. Acta Hort, 2000,521: 101–109.

  205. GOTO F, YOSHIHARA T, SAIKI H, ‘Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin’. Theor Appl Genet, 2000,5: 658–664.

  206. PUCHTA H, ‘Removing selectable marker genes: taking the shortcut’. Trends Plant Sci, 2000,5: 273–274.