Prostaglandins and Cytokines
Prostaglandins
and Cytokines
Prostaglandins
Prostaglandins are derivatives of long-chain unsaturated fatty acids that were discovered in seminal fluid in the 1930s. At first they were thought to be produced only by the prostate gland (hence the name) but now have been found in virtually all mammalian tissues. Prostaglandins act as local hormones that have diverse actions on many different tissues, making generalizations about their effects difficult. Many of their effects, however, involve smooth muscle. In some tissues prostaglandins regulate vasodilation or vasoconstriction by their action on smooth muscle in walls of blood vessels. They are known to stimulate contraction of uterine smooth muscle during childbirth. There also is evidence that overproduction of uterine prostaglandins is responsible for painful symptoms of menstruation (dysmenorrhea) experienced by many women. Several inhibitors of prostaglandins that provide relief from these symptoms have now been approved as medicines. Among other actions of prostaglandins is their intensification of pain in damaged tissues, mediation of the inflammatory response, and involvement in fever.
Cytokines
For some years we have known that cells of the immune system communicate with each other and that this communication was crucial to the immune response. Now we understand that a large group of polypeptide hormones called cytokines mediate communication between cells participating in the immune response. Cytokines can affect the cells that secrete them, affect nearby cells, and like other hormones, they can affect cells in distant locations. Their target cells bear specific receptors for the cytokine bound to the surface membrane. Cytokines coordinate a complex network, with some target cells being activated, stimulated to divide and often to secrete their own cytokines. The same cytokine that activates some cells may suppress division of other target cells. Cytokines also are involved in formation of blood, and more recently, their role in regulation of energy balance by the central nervous systems is being explored.
Prostaglandins
Prostaglandins are derivatives of long-chain unsaturated fatty acids that were discovered in seminal fluid in the 1930s. At first they were thought to be produced only by the prostate gland (hence the name) but now have been found in virtually all mammalian tissues. Prostaglandins act as local hormones that have diverse actions on many different tissues, making generalizations about their effects difficult. Many of their effects, however, involve smooth muscle. In some tissues prostaglandins regulate vasodilation or vasoconstriction by their action on smooth muscle in walls of blood vessels. They are known to stimulate contraction of uterine smooth muscle during childbirth. There also is evidence that overproduction of uterine prostaglandins is responsible for painful symptoms of menstruation (dysmenorrhea) experienced by many women. Several inhibitors of prostaglandins that provide relief from these symptoms have now been approved as medicines. Among other actions of prostaglandins is their intensification of pain in damaged tissues, mediation of the inflammatory response, and involvement in fever.
Cytokines
For some years we have known that cells of the immune system communicate with each other and that this communication was crucial to the immune response. Now we understand that a large group of polypeptide hormones called cytokines mediate communication between cells participating in the immune response. Cytokines can affect the cells that secrete them, affect nearby cells, and like other hormones, they can affect cells in distant locations. Their target cells bear specific receptors for the cytokine bound to the surface membrane. Cytokines coordinate a complex network, with some target cells being activated, stimulated to divide and often to secrete their own cytokines. The same cytokine that activates some cells may suppress division of other target cells. Cytokines also are involved in formation of blood, and more recently, their role in regulation of energy balance by the central nervous systems is being explored.