References
Selected References
Childress, J. J., H. Felbeck, and G. N. Somero. 1987. Symbiosis in the deep sea. Sci. Am. 256:114–120 (May). The amazing story of how the animals around deep-sea vents, including Riftia pachyptila, manage to absorb hydrogen sulfide and transport it to their mutualistic bacteria. For most animals, hydrogen sulfide is highly toxic.
Crowe, J. H., and A. F. Cooper, Jr. 1971. Cryptobiosis. Sci. Am. 225:30–36 (Dec.). Cryptobiotic nematodes, rotifers, and tardigrades can withstand adverse conditions of astonishing rigor, yet perceptible metabolism continues in their state of suspended animation.
Gould, S. J. 1995. Of tongue worms, velvet worms, and water bears. Natural History 104(1):6–15. Intriguing essay on affinities of Pentastomida, Onychophora, and Tardigrada and how they, along with larger phyla, were products of the Cambrian explosion.
Haugerud, R. E. 1989. Evolution in the pentastomids. Parasitol. Today 5:126–132. Much remains to be learned of this puzzling group, but there is strong evidence of its crustacean affinities.
Hoffman, P. F., and D. P. Schrag. 2000. Snowball Earth. Sci. Am. 282:68–75 (Jan.). It appears that an extreme ice age prevailed on earth 600 million years ago, followed by an extremely warm period fueled by a brutal greenhouse effect. Did these events precipitate the Cambrian explosion?
Rice, M. E., and M. Todorovic (eds). 1975. Proceedings of the International Symposium on the biology of the Sipuncula and Echiura, 2 vols. Washington, D.C., National Museum of Natural History. A series of technical articles, but much of interest for further reading on these two phyla.
Southward, E. C. 1975. Fine structure and phylogeny of the Pogonophora. In E. J. W. Barrington and R. P. S. Jefferies, (eds). Protochordates. London, Zoological Society of London, no. 36.
Childress, J. J., H. Felbeck, and G. N. Somero. 1987. Symbiosis in the deep sea. Sci. Am. 256:114–120 (May). The amazing story of how the animals around deep-sea vents, including Riftia pachyptila, manage to absorb hydrogen sulfide and transport it to their mutualistic bacteria. For most animals, hydrogen sulfide is highly toxic.
Crowe, J. H., and A. F. Cooper, Jr. 1971. Cryptobiosis. Sci. Am. 225:30–36 (Dec.). Cryptobiotic nematodes, rotifers, and tardigrades can withstand adverse conditions of astonishing rigor, yet perceptible metabolism continues in their state of suspended animation.
Gould, S. J. 1995. Of tongue worms, velvet worms, and water bears. Natural History 104(1):6–15. Intriguing essay on affinities of Pentastomida, Onychophora, and Tardigrada and how they, along with larger phyla, were products of the Cambrian explosion.
Haugerud, R. E. 1989. Evolution in the pentastomids. Parasitol. Today 5:126–132. Much remains to be learned of this puzzling group, but there is strong evidence of its crustacean affinities.
Hoffman, P. F., and D. P. Schrag. 2000. Snowball Earth. Sci. Am. 282:68–75 (Jan.). It appears that an extreme ice age prevailed on earth 600 million years ago, followed by an extremely warm period fueled by a brutal greenhouse effect. Did these events precipitate the Cambrian explosion?
Rice, M. E., and M. Todorovic (eds). 1975. Proceedings of the International Symposium on the biology of the Sipuncula and Echiura, 2 vols. Washington, D.C., National Museum of Natural History. A series of technical articles, but much of interest for further reading on these two phyla.
Southward, E. C. 1975. Fine structure and phylogeny of the Pogonophora. In E. J. W. Barrington and R. P. S. Jefferies, (eds). Protochordates. London, Zoological Society of London, no. 36.