Metabolites Stored in Seeds and their Uses
The storage proteins, carbohydrates, and lipids of particular seed crops have
unique chemistries that are responsible for the physical and functional characteristics
of the foods created from them. For example, the storage proteins in wheat,
corn, and soybeans are responsible for the bread-making (Shewry
et al., 2003a),
tortilla-making (Hamaker and Larkins, 2000), and tofu-making (Saio
et al., 1969)
characteristics of their respective flours. The structure of starch, which can be
altered by various mutations, allows creation of candies, sauces, or puddings
with unique gelling characteristics (Orthoefer, 1987). The high contents of monounsaturated
fatty acids found in olives, nuts, and rape seeds (Canola) produce the
healthiest types of cooking oils (Taubes, 2001).
The nature of storage proteins, starches, and oils in seeds is subject to genetic
variation and through selection, plant breeders have been able to create varieties of crop plants with unique compositions of these compounds that make them
suitable for particular uses. However, there are limits to the natural qualitative
and quantitative variation of these molecules, and this places restrictions on
what breeders can accomplish with conventional methods of crop improvement.
Furthermore, domestication and breeding of wild species for use as seed crops
occurred through selective pressure for a limited number of traits, most notably
improved yield. In some cases, this led to selection for one particular attribute at
the expense of others. For example, the sulfur amino acid content of modern
domestic corn appears to be much lower than that of its wild ancestors (Swarup
et al., 1995). Conventional plant breeding is sometimes analogized to working in a
‘‘black box’’ because it is possible to monitor only a limited number of traits
during this process.
With the advent of plant genetic engineering technology, it became possible to
consider novel ways of altering and enhancing seed storage metabolites. Indeed,
biotechnology is currently being used to modify a number of crop traits, including
the nature of the protein, starch, and lipid in seeds. In this chapter, we consider
research that is being done to improve the nutritional quality and functional
characteristics of seed storage proteins. Before describing this research and its
potential in detail, we first provide some background information regarding the
nature of seed storage proteins, how they are synthesized in seeds, and how they
influence the nutritional value and the functional properties of our food and
livestock feed.