Molecular Biology of Cellulose Biosynthesis in Plants
Cellulose synthase genes were first identified in A. xylinum and subsequently in other bacterial species (Matthysse et al., 1995b; Saxena et al., 1990; Wong et al., 1990) before they were identified in plants (Arioli et al., 1998; Pear et al., 1996). A. xylinum produces abundant amounts of cellulose, and it has been a model organism for studies on cellulose biosynthesis, so it is not surprising that cellulose biosynthesis genes were first identified in this organism. Interestingly, the genes from this organism were not found to be useful in isolating cellulose synthase genes from other organisms by nucleic acid hybridization techniques. However, Saxena et al. (1995) compared the derived amino acid sequence of the bacterial cellulose synthase with other proteins and found them useful in identifying conserved amino acid residues in β-glycosyltransferases, more specifically the conserved residues and sequence motif identified as D, D, D, QXXRW in processive β-glycosyltransferases (Saxena et al., 1995). Based on the deduced amino acid sequences of bacterial cellulose synthases and other β-glycosyltransferases, genes for plant cellulose synthases were first identified by random sequencing of a cotton fiber cDNA library (Pear et al., 1996). Two cDNA clones (GhCesA1 and GhCesA2) were identified from the cotton fiber cDNA library, and the derived amino acid sequence of GhCesA1 gave the first glimpse of the primary structure of a plant cellulose synthase (Pear et al., 1996).
Around the same time that cDNA clones encoding cellulose synthases were identified in cotton by random sequencing (Pear et al., 1996), a number of cDNA clones encoding amino acid sequences containing the D, D, D, QXXRW conserved residues and sequence motif were identified by sequence analysis of expressed sequence tag (EST) sequences of Arabidopsis and rice that were available in the public databases (Cutler and Somerville, 1997; Saxena and Brown, 1997).