ATP-Synthase
ATP production was probably one of the earliest cellular processes to evolve, and the synthesis of ATP from two precursor molecules is the most prevalent chemical reaction in the world. The enzyme that catalyzes the synthesis of ATP is the ATP-synthase or F
0F
1-ATPase, one of the most ubiquitous proteins on Earth. The F
1F
0-ATPases comprise a huge family of enzymes with members found not only in the thylakoid membrane of chloroplasts but also in the bacterial cytoplasmic
membrane and in the inner membrane of mitochondria. The source of energy for the functioning of ATP-synthase is provided by photosynthetic metabolism in the form of a proton gradient across the thylakoid membrane, that is, a higher concentration of positively charged protons in the thylakoid lumen than in the stroma.
The F
0F
1-ATPase molecule is divided into two portions termed F
1 and F
0. The F
0 portion is embedded in the thylakoid membrane, while the F
1 portion projects into the lumen. Each portion is in turn made up of several different proteins or subunits. In F
0, the subunits are named a, b, and c. There is one a subunit, two b subunits, and 9–12 c subunits. The large a subunit provides the channel through which H
+ ions flow back into the stroma. Rotation of the c subunits, which form a ring in the membrane, is chemically coupled to this flow of H
+ ions. The b subunits are believed to help stabilize the F
0F
1 complex by acting as a tether between the two portions. The
subunits of F
1 are called α, β, γ, δ, and ε. F
1 has three copies each of α and β subunits which are arranged in an alternating configuration to form the catalytic “head” of F
1. The γ and ε subunits form an axis that links the catalytic head of F
1 to the ring of c subunits in F
0. When proton translocation in F
0 causes the ring of c subunits to spin, the γ–ε axis also spins because it is bound to the ring. The opposite end of the γ subunit rotates within the complex of α and β subunits. This rotation causes important conformational changes in the β subunits resulting in the synthesis of ATP from ADP and Pi (inorganic phosphate) and to its release.