Study of Phenocopy
Diabetics dependent on insulin are an example of a phenocopy of normal individuals in the sense that drug environment prevents the effects of the disease. Should their offspring also inherit diabetes? The phenocopy treatment with insulin may have to be administered again to achieve the normal phenotype.
In no sense, therefore, is the diabetic changed by the insulin treatment. There is only a phenotypic effect. By subjecting normal Drosophila eggs, larvae, and pupae to various stress conditions like temperature shock, we obtain a phenotype effect similar to that of a mutant gene. The abnormal effects incurred through these agents are almost identical to specific gene mutations, although they are not inherited. Such individuals are known as phenocopies. The phenocopy partly imitates the mutant gene.
An experiment on this problem was supported by Sang and McDonald (1954), and it allows the exposure of 2 different stocks of Drosophila flies to the phenocopy treatment. One is homozygous for wild type and the other is heterozygous for wild type and the mutant recessive gene.
The mutant recessive, if it were homozygous, would produce a morphological effect duplicated by the phenocopy. Therefore, after particular treatment, more phenocopies are noted in the heterozygous stock than in the homozygous. This may be considered as evidence that the phenocopy is controlling the developmental action.
The mutant effect will be partly duplicated by the phenocopy agent; sodium meteorite is eyeless. Other effects that may also be noted in phenocopy are changes in antennae and forelegs. Prepare sufficient media for Drosophila growth and add around 0.1 mL of silver nitrate to the 8 bottles and keep 2 bottles as control. Transfer wild, colored Drosophilas into all 10 bottles. Permit the parents to lay eggs for about 3 days and discard them. Later, examine the progeny. The silver nitrate has the effect of phenocopy agent and changes the developing larvae to colorless flies. This is not inherited.