Movement onto Land
Movement onto Land
The movement from water to land is perhaps the most dramatic event in animal evolution, because it involves the invasion of a habitat that in many respects is more hazardous for life. Life originated in water. Animals are mostly water in composition, and all cellular activities occur in water. Nevertheless, organisms eventually invaded land, carrying their watery composition with them. Vascular plants, pulmonate snails, and tracheate arthropods made the transition much earlier than vertebrates, and winged insects were diversifying at approximately the same time that the earliest terrestrial vertebrates evolved. Although invasion of land required modification of almost every system in the vertebrate body, aquatic and terrestrial vertebrates retain many basic structural and functional similarities. We see a transition between aquatic and terrestrial vertebrates most clearly today in the many living amphibians that make this transition during their own life histories.
Beyond the obvious difference in water content, there are several important physical differences that animals must accommodate when moving from water to land. These include (1) oxygen content, (2) density, (3) temperature regulation, and (4) habitat diversity. Oxygen is at least 20 times more abundant in air and it diffuses much more rapidly through air than through water. Consequently, terrestrial animals can obtain oxygen far more easily than aquatic ones once they possess the appropriate adaptations, such as lungs. Air, however, has approximately 1000 times less buoyant density than water and is approximately 50 times less viscous. It therefore provides relatively little support against gravity, requiring terrestrial animals to develop strong limbs and to remodel their skeleton to achieve adequate structural support. Air fluctuates in temperature more readily than water does, and terrestrial environments therefore experience harsh and unpredictable cycles of freezing, thawing, drying, and flooding. Terrestrial animals require behavioral and physiological strategies to protect themselves from thermal extremes; one such important strategy is homeothermy (regulated constant body temperature) of birds and mammals.
Despite its hazards, the terrestrial environment offers a great variety of habitats including coniferous, temperate, and tropical forests, grasslands, deserts, mountains, oceanic islands, and polar regions. Provision of safe shelter for protection of vulnerable eggs and young may be accomplished much more readily in many of these terrestrial habitats than in aquatic ones.
The movement from water to land is perhaps the most dramatic event in animal evolution, because it involves the invasion of a habitat that in many respects is more hazardous for life. Life originated in water. Animals are mostly water in composition, and all cellular activities occur in water. Nevertheless, organisms eventually invaded land, carrying their watery composition with them. Vascular plants, pulmonate snails, and tracheate arthropods made the transition much earlier than vertebrates, and winged insects were diversifying at approximately the same time that the earliest terrestrial vertebrates evolved. Although invasion of land required modification of almost every system in the vertebrate body, aquatic and terrestrial vertebrates retain many basic structural and functional similarities. We see a transition between aquatic and terrestrial vertebrates most clearly today in the many living amphibians that make this transition during their own life histories.
Beyond the obvious difference in water content, there are several important physical differences that animals must accommodate when moving from water to land. These include (1) oxygen content, (2) density, (3) temperature regulation, and (4) habitat diversity. Oxygen is at least 20 times more abundant in air and it diffuses much more rapidly through air than through water. Consequently, terrestrial animals can obtain oxygen far more easily than aquatic ones once they possess the appropriate adaptations, such as lungs. Air, however, has approximately 1000 times less buoyant density than water and is approximately 50 times less viscous. It therefore provides relatively little support against gravity, requiring terrestrial animals to develop strong limbs and to remodel their skeleton to achieve adequate structural support. Air fluctuates in temperature more readily than water does, and terrestrial environments therefore experience harsh and unpredictable cycles of freezing, thawing, drying, and flooding. Terrestrial animals require behavioral and physiological strategies to protect themselves from thermal extremes; one such important strategy is homeothermy (regulated constant body temperature) of birds and mammals.
Despite its hazards, the terrestrial environment offers a great variety of habitats including coniferous, temperate, and tropical forests, grasslands, deserts, mountains, oceanic islands, and polar regions. Provision of safe shelter for protection of vulnerable eggs and young may be accomplished much more readily in many of these terrestrial habitats than in aquatic ones.