Amrani, A. E., Freire, M., Camara, B., and Couee, I. (1997). Control of the synthesis of ribulose- 1,5-bisphosphate carboxylase/oxygenase large-subunit in cotyledons during dark growth of sugar beet seedlings. Plant Mol. Biol. 34, 651–657.

Andersson, I., and Taylor, T. C. (2003). Structural framework for catalysis and regulation in ribulose-1, 5-bisphosphate carboxylase/oxygenase. Arch. Biochem. Biophys. 414, 130–140.

Andrews, T. J., and Lorimer, G. H. (1978). Photorespiration—still unavoidable? FEBS Lett. 90, 1–9.

Andrews, T. J., and Lorimer, G. H. (1981). RuBisCO: Structure, mechanisms, and prospects for improvement. In ‘‘The Biochemistry of Plants’’ (M. D. Hatch, and N. K. Boardman, eds.), vol. 10, pp. 131–218. Academic Press, San Diego.

Andrews, T. J., and Lorimer, G. H. (1985). Catalytic properties of a hybrid between cyanobacterial large subunits and higher plant small subunits of ribulose bisphosphate carboxylase-oxygenase. J. Biol. Chem. 260, 4632–4636.

Andrews, T. J., and Whitney, S. M. (2003). Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants. Arch. Biochem. Biophys. 414, 159–169.

Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003). A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302, 286–290.

Ashida, H., Danchin, A., and Yokota, A. (2005). Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism? Res. Microbiol. 156, 611–618.

Badger, M. R. (1980). Kinetic properties of ribulose 1,5-bisphosphate carboxylase/oxygenase from Anabaena variabilis. Arch. Biochem. Biophys. 201, 247–254.

Badger, M. R., and Spalding, M. H. (2000). CO2 acquisition, concentration and fixation in cyanobacteria and algae. In ‘‘Photosynthesis: Physiology and Metabolism’’ (R. C. Leegood, T. D. Sharkey, and S. von Caemmerer, eds.), pp. 369–397. Kluwer Academic, Dordrecht.

Badger, M. R., Sharkey, T. D., and von Caemmerer, S. (1984). The relationship between steady state gas exchange of bean leaves and the level of carbon reduction cycle intermediates. Planta 160, 305–313.

Boyer, J. (1982). Plant productivity and environment. Science 218, 443–448.

Brutnell, T. P., Sawers, R. J., Mant, A., and Langdale, J. A. (1999). BUNDLE SHEATH DEFECTIVE2, a novel protein required for post-translational regulation of the rbcLgeneofmaize. Plant Cell 11, 849–864.

Buchanan, B. (1991). Regulation of CO2 assimilation in oxygenic photosynthesis: The ferredoxin/ thioredoxin system. Perspective on its discovery, present status, and future development. Arch. Biochem. Biophys. 288, 1–9.

Checa, S. K., and Viale, A. M. (1997). The 70-kDa heat-shock protein/DnaK chaperone system is required for the productive folding of ribulose-biphosphate carboxylase subunits in Escherichia coli. Eur. J. Biochem. 248, 848–855.

Cleland, W. W., Andrews, T. J., Gutteridge, S., Hartman, F. C., and Lorimer, G. H. (1998). Mechanism of RuBisCO: The carbamate as general base. Chem. Rev. 98, 549–561.

Cloney, L. P., Bekkaoui, D. R., and Hemmingsen, S. M. (1993). Co-expression of plastid chaperonin genes and a synthetic plant RuBisCO operon in Escherichia coli. Plant Mol. Biol. 23, 1285–1290.

Daniell, H. (1999). Chloroplast genetic engineering. Nat. Biotechnol. 17, 855–856.

Daniell, H., Kumar, S., and Dufourmantel, N. (2005). Breakthrough in chloroplast genetic engineering of agronomically important crops. Trend Biotechnol. 23, 238–245.

Dhingra, A., Portis, A. R., and Daniell, H. (2004). Enhanced translation of a chloroplast-expressed RbsS gene reporter small subunit levels and photosynthesis in nuclear rbcS antisense plants. Proc. Natl. Acad. Sci. USA 101, 6315–6320.

Douce, R., and Heldt, H. W. (2000). Photorespiration. In ‘‘Photosynthesis: Physiology and Metabolism’’ (R. C. Leegood, T. D. Sharkey, and S. von Caemmerer, eds.), pp. 115–136. Kluwer Academic, Dordrecht.

Edwards, G. E., and Walker, D. A. (1983). ‘‘C3, C4: Mechanisms, and Cellular and Environmental Regulation of Photosynthesis.’’ Blackwell, London.

Ellis, R. J. (1979). The most abundant protein in the world. Trends Biochem. Sci. 4, 241–244.

Evans, J. R., and Loreto, F. (2000). Acquisition and diffusion of CO2 in higher plant leaves. In ‘‘Photosynthesis’’ (R. C. Leegood, T. D. Sharkey, and S. von Caemmerer, eds.), vol. 9, pp. 321–351. Kluwer Academic, Dordrecht.

Ezaki, S., Maeda, N., Kishimoto, T., Atomi, H., and Imanaka, T. (1999). Presence of a structurally novel type ribulose-bisphosphate carboxylase/oxygenase in the hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1. J. Biol. Chem. 274, 5078–5082.

Farquhar, G. D. (1979). Models describing the kinetics of ribulose biphosphate carboxylase-oxygenase. Arch. Biochem. Biophys. 193, 456–468.

Farquhar, G. D., von Caemmerer, S., and Berry, J. A. (1981). A biochemical model of photosynthetic carbon dioxide assimilation in leaves of 3-carbon pathway species. Planta 149, 78–90.

Finn, M. W., and Tabita, F. R. (2003). Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea. J. Bacteriol. 185, 3049–3059.

Flü ge, U. I. (1998). Metabolite transporters in plastids. Curr. Opin. Plant Biol. 1, 201–206.

Foyer, C. H., Nurmi, A., Dulieu, H., and Parry, M. A. J. (1993). Analysis of two RuBisCO-deficient tobacco mutants, H7 and Sp25: Evidence for the production of RuBisCO large subunits in the SP25 mutant that form clusters and are inactive. J. Exp. Bot. 44, 1445–1452.

Fridyand, L. E., and Scheibe, R. (2000). Regulation in metabolic systems under homeostatic flux control. Arch. Biochem. Biophys. 374, 198–206.

Frydman, J. (2001). Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647.

Fukayama, H., Imanari, E., Tsuchida, H., Izui, K., Matsuoka, M., and Miyao, M. (2000). In vivo activity of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Plant Cell Physiol. 41, s112.

Fukayama, H., Tsuchida, H., Agarie, S., Nomura, M., Onodera, H., Ono, K., Lee, B., Hirose, S., Toki, S., Ku, M. S., Makino, A., Matsuoka, M., and Miyao, M. (2001). Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant Physiol. 127, 1136–1146.

Galtier, N., Foyer, C. H., Huber, J., Voelker, T. A., and Huber, S. C. (1993). Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning, and growth in tomato (Lycopersicon esculentum var UC82B). Plant Physiol. 101, 535–543.

Gatenby, A. A., and Ellis, R. J. (1990). Chaperone function: The assembly of ribulose bisphosphate carboxylase-oxygenase. Annu. Rev. Cell Biol. 6, 125–149.

Gatenby, A. A., van der Vies, S. M., and Rothstein, S. J. (1987). Co-expression of both the maize large and wheat small subunit genes of ribulose-bisphosphate carboxylase in Escherichia coli. Eur. J. Biochem. 168, 227–231.

Geiger, D. R., and Servaites, J. C. (1994). Diurnal regulation of photosynthetic carbon metabolism in C3 plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 235–256.

Grimm, R., Grimm, M., Eckerskorn, C., Pohlmeyer, K., Rohl, T., and Soll, J. (1997). Postimport methylation of the small subunit of ribulose-1,5-bisphosphate carboxylase in chloroplasts. FEBS Lett. 408, 350–354.

Gutteridge, S., and Gatenby, A. A. (1995). Rubisco synthesis, assembly, mechanism, and regulation. Plant Cell 7, 809–819.

Haake, V., Zrenner, R., Sonnewald, U., and Stitt, M. (1998). A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. Plant J. 14, 147–157.

Haake, V., Geiger, M., Walch, L. P., Engels, C., Zrenner, R., and Stitt, M. (1999). Changes in aldolase activity in wild-type potato plants are important for acclimation to growth irradiance and carbon dioxide concentration, because plastid aldolase exerts control over the ambient rate of photosynthesis across a range of growth conditions. Plant J. 17, 479–489.

Hanson, T. E., and Tabita, F. R. (2001). A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)- like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc. Natl. Acad. Sci. USA 98, 4397–4402.

Harrison, E. P., Willingham, N. M., Lloyd, J. C., and Raines, C. A. (1998). Reduced sedoheptulose 1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 204, 27–36.

Harpel, M. R., and Harman, F. C. (1992). Enhanced CO2/O2 specificity of a site-directed mutant of ribulose-bisphosphate carboxylase/oxygenase. J. Biol. Chem. 267, 6475–6478.
Hartman, F. C., and Harpel, M. R. (1994). Structure, function and assembly of D-ribulose-1, 5-bisphosphate carboxylase/oxygenase. Annu. Rev. Biochem. 63, 197–234.

Hatoori, T., and Margulies, M. M. (1986). Synthesis of large subunit of ribulosebisphosphate carboxylase by thylakoid-bound polyribosomes from spinach chloroplasts. Arch. Biochem. Biophys. 244, 630–640.

Häusler, R. E., Schlieben, N. H., Nicolay, P., Fischer, K., Fischer, K. L., and Flü gge, U. I. (2000). Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum L.). I. Comparative physiological analysis of tobacco plants with antisense repression and overexpression of the triose phosphate/phosphate translocator. Planta 210, 371–382.

Häusler, R. E., Hirsch, H.-J., Kreuzaler, F., and Peterhänsel, C. (2002). Overexpression of C4-cycle enzymes in transgenic C3 plants: A biotechnological approach to improve C3-photosynthesis. J. Exp. Bot. 53, 591–607.

Hebbs, A. E., and Roy, H. (1993). Assembly of in vitro synthesized large subunits into ribulosebisphosphate carboxylase/oxygenase. Formation and discharge of an L8-like species. J. Biol. Chem. 268, 13519–13525.

Heldt, H.W.(1997). ‘‘Plant BiochemistryandMolecularBiology.’’ p. 188.OxfordUniversity Press,Oxford.

Henkes, S., Sonnewald, U., Badur, R., Flachmann, R., and Stitt, M. (2001). Small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13, 535–551.

Hess, J. L., and Tolbert, N. E. (1966). Glycolate, glycine, serine, and glycerate formation during photosynthesis by tobacco leaves. J. Biol. Chem. 241, 5705–5711.

Ho, C. L., and Saito, K. (2001). Molecular biology of the spastidic phosphorylated serine biosynthetic pathway in Arabidopsis thaliana. Amino Acids 20, 243–259.

Houtz, R. L., and Portis, A. R., Jr. (2003). The life of ribulose 1,5-bisphosphate carboxylase/oxygenaseposttranslational facts and mysteries Arch. Biochem. Biophys. 414, 150–158.

Huber, S. C., and Huber, J. L. (1996). Role and regulation of sucrose-phosphate synthase in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 431–444.

Ivey, R. A., III, Subramanian, C., and Bruce, B. D. (2000). Identification of a Hsp70 recognition domain within the rubisco small subunit transit peptide. Plant Physiol. 122, 1289–1299.

Jarvis, P., and Soll, J. (2002). Toc, tic and chloroplast protein import. Biochim. Biophys. Acta 1590, 177–189.

Kacser, H. (1987). Control of metabolism. In ‘‘The Biochemistry of Plants’’ (D. D. Davies, ed.), vol. 11, pp. 39–67. Academic Press, San Diego.

Kanai, R., and Edwards, G. E. (1999). The biochemistry of C4 photosynthesis. In ‘‘C4 Plant Biology’’ (R. F. Sage and R. K. Monson, eds.), pp. 49–87. Academic Press, San Diego.

Kanevski, I., and Maliga, P. (1994). Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc. Natl. Acad. Sci. USA 91, 1969–1973.

Kanevski, I., Maliga, P., Rhoades, D. F., and Gutteridge, S. (1999). Plastome engineering of ribulose-1,5- bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid. Plant Physiol. 119, 133–142.

Kaplan, A., and Reinhold, L. (1999). CO2 concentrating mechanisms in photosynthetic microorganisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 539–570.

Kato, K., Yokota, A. unpublished.

Kitano, K., Maeda, N., Fukui, T., Atomi, H., Imanaka, T., and Miki, K. (2001). Crystal structure of a novel-type archaeal Rubisco with pentagonal structure. Structure 9, 473–481.

Koßmann, J., Sonnewald, U., and Willmitzer, L. (1994). Reduction of the chloroplastic fructose-1,6- bisphosphatase in transgenic potato plants impairs photosynthesis and plant growth. Plant J. 6, 637–650.

Kostiv, R. V., Small, C. L., and McFadden, B. A. (1997). Mutations in a sequence near the N-terminus of the small subunit alter the CO2/O2 specificity factor for ribulose bisphosphate carboxylase/oxygenase. Photosynth. Res. 54, 127–134.

Krapp, A., Chayes, M. M., David, M. M., Rodrigues, M. L., Pereira, J. S., and Stitt, M. (1994). Decreased ribulose-1,5-bisphosphate carboxylase/oxygenase in transgenic tobacco transformed with ‘antisense’ rbsS: VIII. Impact on photosynthesis and growth in tobacco growing under extreme high irradiance and high temperature. Plant Cell Environ. 17, 945–953.

Ku, M. B. S., Kano-Murakami, Y., and Matsuoka, M. (1996). Evolution and expression of C4 photosynthesis gene. Plant Physiol. 111, 949–957.

Ku, M. B. S., Agarie, S., Nomura, M., Fukayama, H., Tsuchida, H., Ono, K., Hirose, S., Toki, S., Miyao, M., and Matsuoka, M. (1999). High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat. Biotechnol. 17, 76–80.

Ku, M. S., Cho, D., Li, X., Jiao, D. M., Pinto, M., Miyao, M., and Matsuoka, M. (2001). Introduction of genes encoding C4 photosynthesis enzymes into rice plants: Physiological consequences. Novartis Found Symp. 236, 100–111.

Kessler, F., and Blobel, G. (1996). Interaction of the protein import and folding machineries of the chloroplast. Proc. Natl. Acad. Sci. USA 93, 7684–7689.

Laing, W. A., Ogren, W. L., and Hageman, R. H. (1974). Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2, and ribulose 1,5-bisphosphate carboxylase. Plant Physiol. 54, 678–685.

Larcher, W. (1995). ‘‘Physiological Plant Ecology.’’ p. 119. Springer, Berlin.

Lee, G. J., and McFadden, B. A. (1992). Serine-376 contributes to the binding of substrate by ribulosebisphosphate carboxylase/oxygenase from Anacystis nidulans. Biochemistry 31, 2304–2308.

Lefebvre, S., Lawson, T., Zakhleniuk, O. V., Lloyd, J. C., and Raines, C. A. (2005). Increased sedoheptulose- 1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol. 138, 451–460.

Leggewie, G., Kolbe, A., Lemoine, R., Roessner, U., Lytovchenko, A., Zuther, E., Kehr, J., Frommer, W. B., Riesmeier, J. W., Willmitzer, L., and Fernie, A. R. (2003). Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology. Planta 217, 158–167.

Lieman-Hurwitz, J., Rachmilevitch, S., Mittler, R., Marcus, Y., and Kaplan, A. (2003). Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3- accumulation in cyanobacteria. Plant Biotechnol. J. 1, 43–50.

Lunn, J. E., Gillespie, V. J., and Furbank, R. T. (2003). Expression of a cyanobacterial sucrose-phosphate synthase from Synechocystis sp. PCC 6803 in transgenic plants. J Exp. Bot. 54, 223–237.

Makino, A., Shimada, T., Takumi, S., Kaneko, K., Matsuoka, M., Shimamoto, K., Nakano, H., Miyao- Tokutomi, M., and Yamamoto, N. (1997). Does decrease in ribulose-1,5-bisphosphate carboxylase by antisense rbsS lead to a high N-use efficiency of photosynthesis under conditions of saturating CO2 and light in rice plants? Plant Physiol. 114, 483–491.

Mann, C. C. (1999). Crop scientists seek a new revolution. Science 283, 310–314.

Martin, W., Scheibe, R., and Schnarrenberger, C. (2000). The Calvin cycle and its regulation. In ‘‘Photosynthesis’’ (R. C. Leegood, T. D. Sharkey, and S. von Caemmerer, eds.), vol. 9, pp. 9–51. Kluwer Academic, Dordrecht.

Masle, J., Hudson, G. S., and Badger, M. R. (1993). Effects of ambient CO2 concentration on growth and nitrogen use in tobacco (Nicotiana tabacum) plants transformed with an antisense gene to the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol. 103, 1075–1088.

Matsuoka, M., Furbank, R. T., Fukayama, H., and Miyao, M. (2001). Molecular engineering of C4 photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 297–314.

Mauser, H., King, W. A., Gready, J. E., and Andrews, T. J. (2001). CO2 fixation by Rubisco: Computational dissection of the key steps of carboxylation, hydration, and C-C bond cleavage. J. Am. Chem. Soc. 123, 10821–10829.

McCurry, S. D., Pierce, J., Tolbert, N. E., and Orme-Johnson, W. H. (1981). On the mechanism of effector-mediated activation of ribulose bisphosphate carboxylase/oxygenase. J. Biol. Chem. 256, 6623–6628.

Minami, E., and Watanabe, A. (1984). Thylakoid membranes: The translational site of chloroplast DNAregulated thylakoid polypeptides. Arch. Biochem. Biophys. 235, 562–570.

Miyake, C., and Yokota, A. (2000). Determination of the rate of photoreduction of O2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis. Plant Cell Physiol. 41, 335–343.

Miyagawa, Y., Tamoi, M., and Shigeoka, S. (2001). Overexpression of a cyanobacterial fructose-1,6-/ sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat. Biotechnol. 19, 965–969.

Morell, M. K., Paul, K., Kane, H. J., and Andrews, T. J. (1992). Rubisco: Maladapted or misunderstood? Aust. J. Bot. 40, 431–441.

Okano, Y., Mizohata, E., Xie, Y., Matsumura, H., Sugawara, H., Inoue, T., Yokota, A., and Kai, Y. (2002). X-ray structure of Galdieria Rubisco complexed with one sulfate ion per active site. FEBS Lett. 527, 33–36.

Parry, M. A. J., Andralojc, P. J., Mitchell, R. A. C., Madgwick, P. J., and Keys, A. J. (2003). Manipulation of Rubisco: The amount, activity, function and regulation. J. Exp. Bot. 54, 1321–1333.

Paul, M. J., and Foyer, C. H. (2001). Sink regulation of photosynthesis. J. Exp. Bot. 52, 1383–1400.

Paul, M. J., Knight, J. S., Habash, D., Parry, M. A. J., Lawlor, D. W., Barnes, S. A., Loynes, A., and Gray, J. C. (1995). Reduction in phosphoribulokinase activity by antisense RNA in transgenic tobacco: Effect on CO2 assimilation and growth in low irradiance. Plant J. 7, 535–542.

Porits, A. R., Jr. (1990). Rubisco activase. Biochim. Biophys. Acta 1015, 15–28.

Preiss, J. (1996). ADPglucose pyrophosphorylase: Basic science and applications in biotechnology. Biotechnol. Annu. Rev. 2, 259–279.

Preiss, J., Ball, K., Smith-White, B., Iglesias, A., Kakefuda, G., and Li, L. (1991). Starch biosynthesis and its regulation. Biochem. Soc. Trans. 19, 539–547.

Price, G. D., and Badger, M. R. (1989). Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype. Evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol. 91, 505–513.

Price, G. D., Evans, J. R., von Caemmerer, S., Yu, J.-W., and Badger, M. R. (1995). Specific reduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase activity by antisense RNA reduces CO2 assimilation via a reduction in ribulose bisphosphate regeneration I transgenic tobacco plants. Planta 195, 369–378.

Quick, W. P., Schurr, U., Schreibe, R., Schulze, E.-D., Rodermel, S. R., Bogorad, L., and Stitt, M. (1991). Decreased ribulose-1,5-phosphate carboxylase-oxygenase in transgenic tobacco transformed with ‘antisense’ rbcS. I Impact on photosynthesis in ambient growth conditions. Planta 183, 542–554.

Read, B. A., and Tabita, F. R. (1992a). Amino acid substitutions in the small subunit of ribulose- 1,5-bisphosphate carboxylase/oxygenase that influence catalytic activity of the holoenzyme. Biochemistry 31, 519–525.

Read, B. A., and Tabita, F. R. (1992b). A hybrid ribulosebisphosphate carboxylase/oxygenase enzyme exhibiting a substantial increase in substrate specificity factor. Biochemistry 31, 5553–5560.

Riesmeier, J. W., Frommer, W. B., and Willmitzer, L. (1994). Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J. 13, 1–7.

Robinson, S. P., and Walker, D. A. (1981). Photosynthetic carbon reduction cycle. In ‘‘The Biochemistry of Plants’’ (M. D. Hatch and N. K. Boardman, eds.), vol. 8, pp. 193–236. Academic Press, New York.

Roy, H., and Andrews, T. J. (2000). Rubisco: Assembly and mechanism. In ‘‘Photosynthesis: Physiology and Metabolism’’ (R. C. Leegood, T. D. Sharkey, and S. von Caemmerer, eds.), pp. 53–83. Kluwer Academic, Dordrecht.

Roy, H., and Cannon, S. (1988). Ribulose bisphosphate carboxylase assembly: What is the role of the large subunit binding protein? Trends Biochem. Sci. 13, 163–165.

Ruf, S., Hermann, M., Berger, I. J., Carrer, H., and Bock, R. (2001). Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat. Biotechnol. 19, 870–875.

Sage, R. F. (1990). A model describing the regulation of ribulose-1,5-bisphosphate carboxylase, electron transport, and triose phosphate use in response to light intensity and CO2 in C3 plants. Plant Physiol. 94, 1728–1734.

Sage, R. F., Sharkey, T. D., and Seemann, J. R. (1989). Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol. 89, 590–596.

Schleiff, E., Soll, J., Sveshnikova, N., Tien, R., Wright, S., Dabney-Smith, C., Subramanian, C., and Bruce, B. D. (2002). Structural and guanosine triphsophate/diphosphate requirements for transit peptide recognition by the cytosolic domain of the chloroplast outer envelope receptor, ToC34. Biochemistry 41, 1934–1946.

Seemann, J. R., Badger, M. R., and Berry, J. A. (1984). Variations in the specific activity of ribulose- 1,5-bisphosphate carboxylase (EC between species utilizing differing photosynthetic pathways. Plant Physiol. 74, 791–794.

Sekowska, A., Denervaud, V., Ashida, H., Michoud, K., Hass, D., Yokota, A., and Danchin, A. (2004). Bacterial variations on the methionine salvage pathway. BMC Microbiol. 4, 9.

Shibata, M., Katoh, H., Sonoda, M., Ohkawa, H., Shimoyama, M., Fukuzawa, H., Kaplan, A., and Ogawa, T. (2002). Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: Function and phylogenetic analysis. J. Biol. Chem. 277, 18658–18664.

Shikanai, T., Foyer, C. H., Dulieu, H., Parry, M. A., and Yokota, A. (1996). A point mutation in the gene encoding the Rubisco large subunit interferes with holoenzyme assembly. Plant Mol. Biol. 31, 399–403.

Shikanai, T., Takeda, T., Yamauchi, H., Sano, H., Tomizawa, K., Yokota, A., and Shigeoka, S. (1998). Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett. 428, 47–51.

Sidorov, V. A., Kasten, D., Pamg, S. Z., Hajdukiewicz, P. T., Staub, J. M., and Nehra, N. S. (1999). Technical advance: Stable chloroplast transformation in potato: Use of green fluorescent protein as a plastid marker. Plant J. 19, 209–216.

Smith, M. D., Ghosh, S., Dumbroff, E. B., and Thompson, J. E. (1997). Characterization of thylakoidderived lipid-protein particles bearing the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase. Plant Physiol. 115, 1073–1082.

Spreitzer, R. J. (2003). Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch. Biochem. Biophys. 414, 141–149.

Spreitzer, R. J., and Salvucci, M. E. (2002). RUBISCO: Structures, regulatory interactions, and a better enzyme. Annu. Rev. Plant Biol. 53, 441–475.

Stephanopoulos, G. N., Aristidou, A. A., and Nielsen, J. (1998). ‘‘Metabolic Engineering: Principles and Methodologies.’’ 461–533. Academic Press, San Diego.

Stitt, M., and Sonnewald, U. (1995). Regulation of metabolism in transgenic plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 341–368.

Sugawara, H., Yamamoto, H., Shibata, H., Inoue, T., Okada, S., Miyake, C., Yokota, A., and Kai, Y. (1999). Crystal structure of carboxylase-oriented ribulose-1,5-bisphosphate carboxylase/oxygenase from a thermophilic red alga, Galdieria partita. J. Biol. Chem. 274, 15655–15661.

Svab, Z., and Maliga, P. (1993). High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90, 913–917.

Takeuchi, Y., Akagi, H., Kamasawa, N., Osumi, M., and Honda, H. (2000). Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta 211, 265–274.

Tamoi, M., Ishikawa, T., Takeda, T., and Shigeoka, S. (1996a). Enzymic and molecular characterization of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Synechococcus PCC 7942: Resistance of the enzyme to hydrogen peroxide. Biochem. J. 316, 685–690.

Tamoi, M., Ishikawa, T., Takeda, T., and Shigeoka, S. (1996b). Molecular characterization and resistance to hydrogen peroxide of two fructose-1,6-bisphosphatases from Synechococcus PCC 7942. Arch. Biochem. Biophys. 334, 27–36.

Tamoi, M., Murakami, A., Takeda, T., and Shigeoka, S. (1998). Lack of light/dark regulation of enzymes involved in the photosynthetic carbon reduction cycle in cyanobacteria, Synechococcus PCC 7942 and Synechocystis PCC 6803. Biosci. Biotechol. Biochem. 62, 374–376.

Tamoi, M., Kanaboshi, H., Miyasaka, H., and Shigeoka, S. (2001). Molecular mechanisms of the resistance to hydrogen peroxide of enzymes involved in the Calvin cycle from halotolerant Chlamydomonas sp. W80. Arch. Biochem. Biophys. 390, 176–185.

Tamoi, M., Nagata, M., Yabuta, Y., and Shigeoka, S. (2005). Carbon metabolism in the Calvin cycle. Plant Biotechnol. 22, 355–360.

Tamoi, M., Nagaoka, M., Miyagawa, Y., and Shigeoka, S. (2006). Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol. 47, 380–390.

Tolbert, N. E. (1994). Role of photosynthesis and photorespiration in regulating atmospheric CO2 and O2. In ‘‘Regulation of Atmospheric CO2 and O2 by Photosynthetic Carbon Metabolism’’ (N. E. Tolbert and J. Preiss, eds.), pp. 8–33. Oxford University Press, New York.

Tsuchida, H., Tamai, T., Fukayama, H., Agarie, S., Nomura, M., Onodera, H., Ono, K., Nishizawa, Y., Lee, B., Hirose, S., Toki, S., Ku, M. S., et al. (2001). High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. Plant Cell Physiol. 42, 138–145.

Tsujii, H. (2000). Food shortage in the 21st century and its implications for agricultural research. In ‘‘Challenge of Plant and Agricultural Sciences to the Crisis of Biosphere on the Earth in the 21st Century’’ (K. Watanabe and A. Komamine, eds.), pp. 5–28. Landes Bioscience, Georgetown, Texas.

Uedan, K., and Sugiyama, T. (1976). Purification and characterization of phosphoenolpyruvate carboxylase from maize leaves. Plant Physiol. 57, 906–910.

Uemura, K., Suzuki, Y., Shikanai, T., Wadano, A., Jensen, R. G., Chmara, W., and Yokota, A. (1996). A rapid and sensitive method for determination of relative specificity of RuBisCO from various species by anion-exchange chromatography. Plant Cell Physiol. 37, 325–331.

Uemura, K., Anwaruzzaman, K., Miyachi, S., and Yokota, A. (1997). Ribulose-1,5-bisphosphate carboxylase/ oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem. Biophys. Res. Commun. 233, 568–571.

Uemura, K., Tokai, H., Higuchi, T., Murayama, H., Yamamoto, H., Enomoto, Y., Fujiwara, S., Hamada, J., and Yokota, A. (1998). Distribution of fallover in the carboxylase reaction and fallover-inducible sites among ribulose 1,5-bisphosphate carboxylase/oxygenases of photosynthetic organisms. Plant Cell Physiol. 39, 212–219.

Uemura, K., Shibata, N., Anwaruzzaman, R., Fujiwara, M., Higuchi, T., Kobayashi, H., Kai, Y., and Yokota, A. (2000). The role of structural intersubunit microheterogeneity in the regulation of the activity in hysteresis of ribulose 1,5-bisphosphate carboxylase/oxygenase. J. Biochem. 128, 591–599.

von Caemmerer, S., and Furbank, R. T. (1999). Modeling of C4 photosynthesis. In ‘‘C4 Plant Biology’’ (R. F. Sage and R. K. Monson, eds.), pp. 173–211. Academic Press, San Diego.

Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B. (2000). Global water resources: Vulnerability from climate change and population growth. Science 289, 284–288.

Voznesenskaya, E. V., Franceschi, V. R., Kiirats, O., Freitag, H., and Edwards, G. E. (2001). Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414, 543–546.

Weise, A., Barker, L., Kü hn, C., Lalonde, S., Buschmann, H., Frommer, W. B., and Ward, J. M. (2000). A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant Cell 12, 1345–1356.

Whitney, S. M., and Andrews, T. J. (2001a). Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. Proc. Natl. Acad. Sci. USA 98, 14738–14743.

Whitney, S. M., and Andrews, T. J. (2001b). The gene for the ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco. Plant Cell 13, 193–205.

Whitney, S. M., Von Caemmerer, S., Hudson, G. S., and Andrews, T. J. (1999). Directed mutation of the Rubisco large subunit of tobacco influences photorespiration and growth. Plant Physiol. 121, 579–588.

Whitney, S. M., Baldet, P., Hudson, G. S., and Andrews, T. J. (2001). Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J. 26, 535–547.

Woodrow, I. E., and Berry, J. A. (1988). Enzymatic regulation of photosynthetic carbon dioxide fixation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 533–594.

Yokota, A., and Canvin, D. T. (1985). Ribulose bisphosphate carboxylase/oxygenase content determined with [14C]carboxypentitol bisphosphate in plants and algae. Plant Physiol. 77, 735–739.

Yokota, A., and Kitaoka, S. (1985). Correct pK values for dissociation constant of carbonic acid lower the reported Km values of ribulose bisphosphate carboxylase to half. Presentation of a nomograph and an equation for determining the pK values. Biochem. Biophys. Res. Commun. 131, 1075–1079.

Zhang, X. H., Ewy, R. G., Widholm, J. M., and Portis, A. R., Jr. (2002). Complementation of the nuclear antisense rbcS-induced photosynthesis deficiency by introducing an rbcS gene into the tobacco plastid genome. Plant Cell Physiol. 43, 1302–1313.