Content of Genetic Engineering of Amino Acid Metabolism in Plants |
» |
Abstract & Keywords |
» |
Introduction |
» |
Glutamine, Glutamate, Aspartate, and Asparagine are Central
Regulators of Nitrogen Assimilation, Metabolism, and Transport |
|
|
» |
GS: A highly regulated, multifunctional gene family |
|
|
» |
Role of the ferredoxin- and NADH-dependent GOGAT
isozymes in plant glutamate biosynthesis |
|
|
» |
Glutamate dehydrogenase: An enzyme with controversial
functions in plants |
|
|
» |
The network of amide amino acids metabolism is regulated
in concert by developmental, physiological, environmental,
metabolic, and stress-derived signals |
» |
The Aspartate Family Pathway that is Responsible
for Synthesis of the Essential Amino Acids Lysine, Threonine,
Methionine, and Isoleucine |
|
|
» |
The aspartate family pathway is regulated by several
feedback inhibition loops |
|
|
» |
Metabolic fluxes of the aspartate family pathway are
regulated by developmental, physiological, and
environmental signals |
|
|
» |
Metabolic interactions between AAAM and the aspartate
family pathway |
|
|
» |
Metabolism of the aspartate family amino acids in
developing seeds: A balance between synthesis and
catabolism |
» |
Regulation of Methionine Biosynthesis |
|
|
» |
Regulatory role of CGS in methionine biosynthesis |
|
|
» |
Interrelationships between threonine
and methionine biosynthesis |
» |
Engineering Amino Acid Metabolism to Improve the Nutritional
Quality of Plants for Nonruminants and Ruminants |
» |
Future Prospects |
» |
Summary |
» |
Acknowledgements |
» |
References |
|
Ameziane, R., Bernhard, K., and Lightfoot, D. (2000). Expression of the bacterial gdhA gene encoding a
NADPH glutamate dehydrogenase in tobacco affects plant growth and development. Plant Soil 221,
47–57.
Amir, R., Hacham, Y., and Galili, G. (2002). Cystathionine γ-synthase and threonine synthase operate in
concert to regulate carbon flow towards methionine in plants. Trends Plant Sci. 7, 153–156.
Aubert, S., Bligny, R., Douce, R., Gout, E., Ratcliffe, R. G., and Roberts, J. K. M. (2001). Contribution of
glutamate dehydrogenase to mitochondrial glutamate metabolism studied by 13C and 31P nuclear
magnetic resonance. J. Exp. Bot. 52, 37–45.
Avraham, T., and Amir, R. (2005). Methionine and threonine regulate the branching point of their
biosynthesis pathways and thus controlling the level of each other. Transgneic Res. 14, 299–311.
Bartlem, D., Lambein, I., Okamoto, T., Itaya, A., Uda, Y., Kijima, F., Tamaki, Y., Nambara, E., and
Naito, S. (2000). Mutation in the threonine synthase gene results in an over-accumulation of soluble
methionine in Arabidopsis. Plant Physiol. 123, 101–110.
Ben Tzvi-Tzchori, I., Perl, A., and Galili, G. (1996). Lysine and threonine metabolism are subject to
complex patterns of regulation in Arabidopsis. Plant Mol. Biol. 32, 727–734.
Bonaventure, N., Wioland, N., and Roussel, G. (1985). Stereospecific effects of the α-aminoadipic acid
on the retina: A morphological and electrophysiological study. Doc. Ophthalmol. 61, 71–77.
Bourgis, F., Roje, S., Nuccio,M. L., Fisher, D. B., Tarczynski, M. C., Li, C.,Herschbach, C., Rennenberg, H.,
Pimenta, M. J., Shen, T.-L., Gage, D. A., Hanson, A. D., et al. (1999). S-methylmethionine plays a
major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase.
Plant Cell 11, 1485–1497.
Chiba, Y., Ishikawa, M., Kijima, F., Tyson, R. H., Kim, J., Yamamoto, A., Nambara, E., Leustek, T.,
Wallsgrove, R. M., and Naito, S. (1999). Evidence for autoregulation of cystathionine γ-synthase
mRNA stability in Arabidopsis. Science 286, 1371–1374.
Chichkova, S., Arellano, J., Vance, C. P., and Hernandez, G. (2001). Transgenic tobacco plants that
overexpress alfalfa NADH-glutamate synthase have higher carbon and nitrogen content. J. Exp. Bot.
52, 2079–2087.
Cordoba, E., Shishkova, S., Vance, C. P., and Hernandez, G. (2003). Antisense inhibition of NADH
glutamate synthase impairs carbon/nitrogen assimilation in nodules of alfalfa (Medicago sativa L.).
Plant J. 33, 1037–1049.
Coruzzi, G., and Last, R. (2000). Amino acids. In ‘‘Biochemistry and Molecular Biology of PlantsAmerican
Society of Plant Physiologists’’ (B. B. Buchanan, W. Gruissem, and R. L. Jones, eds.),
pp. 358–410. American Society of Plant Physiologists, Rockville, MD.
Coruzzi, G. M., and Zhou, L. (2001). Carbon and nitrogen sensing and signaling in plants: Emerging
‘matrix effects’. Curr. Opin. Plant Biol. 4, 247–253.
Coschigano, K. T., Melo-Oliveira, R., Lim, J., and Coruzzi, G. M. (1998). Arabidopsis gls mutants and
distinct Fd-GOGAT genes: Implications for photorespiration and primary nitrogen assimilation.
Plant Cell 10, 741–752.
Craciun, A., Jacobs, M., and Vauterin, M. (2000). Arabidopsis loss-of-function mutant in the lysine
pathway points out complex regulation mechanisms. FEBS Lett. 487, 234–238.
Curien, G., Job, D., Douce, R., and Dumas, R. (1998). Allosteric activation of Arabidopsis threonine
synthase by S-adenosylmethionine. Biochemistry 37, 13212–13221.
Demidov, D., Horstmann, C., Meixner, M., Pickardt, T., Saalbach, I., Galili, G., and Muntz, K. (2003).
Additive effects of
the feed-back insensitive bacterial aspartate kinase and the Brazil nut 2S
albumin on the methionine content of transgenic narbon bean (Vicia narbonensis L.). Mol. Breed.
11, 187–201.
Eckes, P., Schmitt, P., Daub, W., and Wengenmayer, F. (1989). Overproduction of alfalfa glutamine
synthetase in transgenic tobacco plants. Mol. Gen. Genet. 217, 263–268.
Falco, S. C., Guida, T., Locke, M., Mauvais, J., Sandres, C., Ward, R. T., and Webber, P. (1995).
Transgenic canola and soybean seeds with increased lysine. Biotechnology 13, 577–582.
Fei, H., Chaillou, S., Hirel, B., Mahon, J. D., and Vessey, J. K. (2003). Overexpression of a soybean
cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plants grown in
different concentrations of nitrate. Planta 216, 467–474.
Ferrario-Mery, S., Suzuki, A., Kunz, C., Valadier, M. H., Roux, Y., Hirel, B., and Foyer, C. H. (2000).
Modulation of amino acid metabolism in transformed tobacco plants deficient in Fd-GOGAT.
Plant Soil 221, 67–79.
Ferrario-Mery, S., Hodges, M., Hirel, B., and Foyer, C. H. (2002a). Photorespiration-dependent
increases in phosphoenolpyruvate carboxylase, isocitrate dehydrogenase and glutamate dehydrogenase in transformed tobacco plants deficient in ferredoxin-dependent glutamine-α-ketoglutarate
aminotransferase. Planta 214, 877–886.
Ferrario-Mery, S., Valadier, M.-H., Godefroy, N., Miallier, D., Hirel, B., Foyer, C. H., and Suzuki, A.
(2002b). Diurnal changes in ammonia assimilation in transformed tobacco plants expressing
ferredoxin-dependent glutamate synthase mRNA in the antisense orientation. Plant Sci. 163, 59–67.
Finnemann, J., and Schjoerring, J. K. (2000). Post-translational regulation of cytosolic glutamine synthetase
by reversible phosphorylation and 14–3–3 protein interaction. Plant J. 24, 171–181.
Frankard, V., Ghislain, M., and Jacobs, M. (1992). Two feedback-insensitive enzymes of the aspartate
pathway in Nicotiana sylvestris. Plant Physiol. 99, 1285–1293.
Fuentes, S. I., Allen, D. J., Ortiz-Lopez, A., and Hernandez, G. (2001). Over-expression of cytosolic
glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J. Exp.
Bot. 52, 1071–1081.
Gakiere, B., Denis, L., Droux, M., Ravanel, S., and Job, D. (2000). Methionine synthesis in higher plants:
Sense strategy applied to cystathionine γ-synthase and cystathionine β-lyase in Arabidopsis thaliana.
In ‘‘Sulfur Nutrition and Sulfur Assimilation in Higher Plants’’ (C. Brunold, ed.), pp. 313–315. Paul
Haupt, Bern, Switzerland.
Galili, G. (1995). Regulation of lysine and threonine synthesis. Plant Cell 7, 899–906.
Galili, G. (2002). New insights into the regulation and functional significance of lysine metabolism in
plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 53, 27–43.
Galili, G., and Hofgen, R. (2002). Metabolic engineering of amino acids and storage proteins in plants.
Metab. Eng. 4, 3–11.
Galili, G., Shaul, O., Perl, A., and Karchi, H. (1995). Synthesis and accumulation of the essential amino
acids lysine and threonine in seeds. In ‘‘Seed Development and Germination’’ (J. Kigel and G. Galili,
eds.), pp. 811–831. Marcel Dekker, New York.
Galili, G., Tang, G., Zhu, X., and Gakiere, B. (2001). Lysine catabolism: A stress and development superregulated
metabolic pathway. Curr. Opin. Plant Biol. 4, 261–266.
Galili, G., Galili, S., Lewinsohn, E., and Tadmor, Y. (2002). Genetic, molecular and genomic approaches
to improve the value of plant foods and feeds. Critical Rev. Plant Sci. 21, 167–204.
Gallardo, F., Fu, J., Canton, F. R., Garcia-Gutierrez, A., Canovas, F. M., and Kirby, E. G. (1999).
Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19–26.
Giovanelli, J., Mudd, S. H., and Datko, A. H. (1985). Quantitative analysis of pathways of methionine
metabolism and their regulation in Lemna. Plant Physiol. 78, 555–560.
Goto, D. B., Ogi, M., Kijima, F., Kumagai, T., Van Werven, F., Onouchi, H., and Naito, S. (2002).
A single-nucleotide mutation in a gene encoding S-adenosylmethionine synthetase is associated
with methionine over-accumulation phenotype in Arabidopsis thaliana. Genes Genet. Syst. 77, 89–95.
Guenoune, D., Amir, R., Ben-Dor, B., Wolf, S., and Galili, S. (1999).A soybean vegetative storage protein
accumulates to high levels in various organs of transgenic tobacco plants. Plant Sci. 145, 93–98.
Guenoune, D., Amir, R., Badani, H., Wolf, S., and Galili, S. (2002a). Combined expression of S-VSPa in
two different organelles enhances its accumulation and total lysine production in leaves of transgenic
tobacco plants. J. Exp. Bot. 53, 1867–1870.
Guenoune, D., Landau, S., Amir, R., Badani, H., Devash, L., Wolf, S., and Galili, S. (2002b). Resistance of
soybean vegetative storage proteins (S-VSPs) to proteolysis by rumen microorganisms. J. Agric. Food
Chem. 50, 2256–2260.
Guenoune, D., Amir, R., Badani, H., Wolf, S., and Galili, S. (2003). Coexpression of the soybean
vegetative storage protein b subunit (S-VSPb) either with the bacterial feedback-insensitive dihydrodipicolinate
synthase or with S-VSPa stabilizes the S-VSPb transgene protein and enhances
lysine production in transgenic tobacco plants. Transgenic Res. 12, 123–126.
Habash, D. Z., Massiah, A. J., Rong, H. L., Wallsgrove, R. M., and Leigh, R. A. (2001). The role of
cytosolic glutamine synthetase in wheat. Ann. Appl. Biol. 138, 83–89.
Hacham, Y., Avraham, T., and Amir, R. (2002). The N-terminal region of Arabidopsis cystathionine
γ-synthase plays an important role in methionine metabolism. Plant Physiol. 128, 454–462.
Hagan, N. D., Upadhyaya, N., Tabe, L. M., and Higgins, T. J. V. (2003). The redistribution of protein
sulfur in transgenic rice expressing a gene for a foreign sulfur-rich protein. Plant J. 34, 1–11.
Hirel, B., and Lea, P. J. (2001). Ammonia assimilation. In ‘‘Plant Nitrogen’’ (P. J. Lea and J.-F. Morot-
Gaudry, eds.), pp. 79–99. Springer-Verlag, Berlin.
Hirel, B., Marsolier, M. C., Hoarau, A., Hoarau, J., Brangeon, J., Schafer, R., and Verma, D. P. S. (1992).
Forcing expression of a soybean root glutamine synthetase gene in tobacco leaves induces a native
gene encoding cytosolic enzyme. Plant Mol. Biol. 20, 207–218.
Hunter, B. G., Beatty, M. K., Singletary, G. W., Hamaker, B. R., Dilkes, B. P., Larkins, B. A., and Jung, R.
(2002). Maize opaque endosperm mutations create extensive changes in patterns of gene expression.
Plant Cell 14, 2591–2612.
Inaba, K., Fujiwara, T., Hayashi, H., Chino, M., Komeda, Y., and Naito, S. (1994). Isolation of an
Arabidopsis thaliana mutant, mto1, that overaccumulates soluble methionine. Temporal and spatial
patterns of soluble methionine accumulation. Plant Physiol. 104, 881–887.
Ireland, R. J., and Lea, P. J. (1999). The enzymes of glutamine, glutamate, asparagine, and aspartate
metabolism. In ‘‘Plant Amino Acids: Biochemistry and Biotechnology’’ (B. K. Singh, ed.),
pp. 49–109. Marcel Dekker, New York.
Jacobs, M., Negrutiu, I., Dirks, R., and Cammaerts, D. (1987). Selection programs for isolation and
analysis of mutants in plant cell cultures. In ‘‘Plant Biology’’ (C. E. Green, D. A. Somers,
W. P. Hackett, and D. D. Biesboer, eds.), pp. 243–264. Alan R. Liss, New York.
Jacobs, M., Vauterin, M., De Waele, E., and Craciun, A. (2001). Manipulating plant biochemical pathways
for improved nutritional quality. In ‘‘Plant Biotechnology and Transgenic Plants’’ (Oksman-
Caldentey and Barz, eds.), pp. 233–253. Marcel Dekker, New York.
Jiang, Q., and Gresshoff, P. M. (1997). Classical and molecular genetics of the model legume Lotus
japonicus. Mol. Plant Micr. Interac. 10, 59–68.
Jung, R., and Falco, S. C. (2000). Transgenic corn with an improved amino acid composition. In ‘‘Eighth
International Symposium on Plant Seeds.’’ Gatersleben, Germany.
Karchi, H., Shaul, O., and Galili, G. (1993). Seed-specific expression of a bacterial desensitized aspartate
kinase increases the production of seed threonine and methionine in transgenic tobacco. Plant J.
3, 721–727.
Karchi, H., Shaul, O., and Galili, G. (1994). Lysine synthesis and catabolism are coordinately regulated
during tobacco seed development. Proc. Natl. Acad. Sci. USA 91, 2577–2581.
Karlsen, R. L., Pedersen, O. O., Schousboe, A., and Langeland, A. (1982). Toxic effects of DL
α-aminoadipic acid on muller cells from rats in vivo and cultured cerebral astrocytes. Exp. Eye.
Res. 35, 305–311.
Kemper, E. L., Neto, G. C., Papes, F.,Moraes, K. C. M., Leite, A., and Arruda, P. (1999). The role of opaque2
in the control of lysine-degrading activities in developing maize endosperm. Plant Cell 11, 1981–1993.
Kim, J., and Leustek, T. (2000). Repression of cystathionine γ-synthase in Arabidopsis thaliana produces
partial methionine auxotrophy and developmental abnormalities. Plant Sci. 151, 9–18.
Kim, J., Lee, M., Chalam, R., Martin, M. N., Leustek, T., and Boerjan, W. (2002). Constitutive overexpression
of cystathionine γ-synthase in Arabidopsis leads to accumulation of soluble methionine
and S-methylmethionine. Plant Physiol. 128, 95–107.
Kishor, P. B. K., Hong, Z., Miao, G.-H., Hu, C.-A. A., and Verma, D. P. S. (1995). Overexpression of
D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in
transgenic plants. Plant Physiol. 108, 1387–1394.
Kocsis, M. G., Ranocha, P., Gage, D. A., Simon, E. S., Rhodes, D., Peel, G. J., Mellema, S., Saito, K.,
Awazuhara, M., Li, C., Meeley, R. B., Tarczynski, M. C., et al. (2003). Insertional inactivation of the
methionine S-methyltransferase gene eliminates the S-methylmethionine cycle and increases the
methylation ratio. Plant Physiol. 131, 1808–1815.
Kreft, O., Hoefgen, R., and Hesse, H. (2003). Functional analysis of cystathionine γ-synthase in genetically
engineered potato plants. Plant Physiol. 131, 1843–1854.
Lai, J., and Messing, J. (2002). Increasing maize seed methionine by mRNAstability. Plant J. 30, 395–402.
Lam, H.-M., Coschigano, K., Schultz, C., Melo-Oliveira, R., Tjagen, G., Oliveira, I., Ngai, N.,
Hsieh, M.-H., and Coruzzi, G. (1995). Use of Arabidopsis mutants and genes to study amide amino
acid biosynthesis,. Plant Cell 7, 887–898.
Lam, H.-M., Coschigano, K. T., Oliveira, I. C., Melo-Oliveira, R., and Coruzzi, G. M. (1996). The
molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant
Physiol. Plant Mol. Biol. 47, 569–593.
Lam, H.-M., Hsieh, M.-H., and Coruzzi, G. (1998). Reciprocal regulation of distinct asparagine synthetase
genes by light and metabolites in Arabidopsis thaliana. Plant J. 16, 345–353.
Lancien, M., Martin, M., Hsieh, M.-H., Leustek, T., Goodman, H., and Coruzzi, G. M. (2002). Arabidopsis
glt1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory
pathway. Plant J. 29, 347–358.
Lawlor, D. W., Lemaire, G., and Gastal, F. (2001). Nitrogen, plant growth and crop yield. In ‘‘Plant
Nitrogen’’ (P. J. Lea and J.-F. Morot-Gaudry, eds.), pp. 343–367. Springer-Verlag, Berlin.
Lea, P. J., and Ireland, R. J. (1999). Nitrogen metabolism in higher plants. In ‘‘Plant Amino Acids:
Biochemistry and Biotechnology’’ (B. K. Singh, ed.), pp. 1–47. Marcel Dekker, New York.
Lee, J.-M., Williams, M. E., Tingey, S. V., and Rafalski, J. A. (2002). DNA array profiling of gene
expression changes during maize embryo development. Funct. Integr. Genomics 2, 13–27.
Leng, R. A. (1990). Factors affecting the utilization of ‘‘poor quality’’ forages by ruminants particularly
under tropical conditions. Nutr. Res. Rev. 3, 277–303.
Li, J., and Last, R. L. (1996). The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate
synthase and elevated soluble tryptophan. Plant Physiol. 110, 51–59.
Limami, A., Phillipson, B., Ameziane, R., Pernollet, N., Jiang, Q., Roy, R., Deleens, E., Chaumont-
Bonnet, M., Gresshoff, P. M., and Hirel, B. (1999). Does root glutamine synthetase control plant
biomass production in Lotus japonicus L.? Planta 209, 495–502.
Limami, A. M., and De Vienne, D. (2001). Natural genetic variability of nitrogen metabolism. In ‘‘Plant
Nitrogen’’ (P. J. Lea and J.-F. Morot-Gaudry, eds.), pp. 369–378. Springer-Verlag, Berlin.
Masclaux, C., Valadier, M.-H., Brugiere, N., Morot-Gaudry, J.-F., and Hirel, B. (2000). Characterization
of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen
management and leaf senescence. Planta 211, 510–518.
Mazur, B., Krebbers, E., and Tingey, S. (1999). Gene discovery and product development for grain
quality traits. Science 285, 372–375.
Mcnabb, W. C., Spencer, D., Higgins, T. J., and Barry, T. N. (1994). In-vitro rates of rumen proteolysis of
ribulose-1,5-bisphosphate carboxylase (Rubisco) from lucerne leaves, and of ovalbumin, vicilin and
sunflower albumin 8 storage proteins. J. Sci. Food Agric. 64, 53–61.
Meers, J. L., Tempest, D. W., and Brown, C. M. (1970). Glutamine/(amide): 2-oxoglutarate amino
transferase oxido-reductase (NADP), an enzyme involved in the synthesis of glutamate by some
bacteria. J. Gen. Microbiol. 64, 187–194.
Melo-Oliveira, R., Oliveira, I. C., and Coruzzi, G. M. (1996). Arabidopsis mutant analysis and gene
regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc.
Natl. Acad. Sci. USA 93, 4718–4723.
Miflin, B. J., and Habash, D. Z. (2002). The role of glutamine synthetase and glutamate dehydrogenase
in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J. Exp.
Bot. 53, 979–987.
Miyazaki, J. H., and Yang, S. F. (1987). The methionine salvage pathway in relation to ethylene and
polyamine biosynthesis. Physiol. Plantarum 69, 366–370.
Molvig, L., Tabe, L. M., Eggum, B. O., Moore, A. E., Craig, S., Spencer, D., and Higgins, T. J. V. (1997).
Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins
(Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc. Natl. Acad. Sci. USA 94,
8393–8398.
Moorhead, G., Douglas, P., Cotelle, V., Harthill, J., Morrice, N., Meek, S., Deiting, U., Stitt, M.,
Scarabel, M., Aitken, A., and Mackintosh, C. (1999). Phosphorylation-dependent interactions
between enzymes of plant metabolism and 14–3–3 proteins. Plant J. 18, 1–12.
Morot-Gaudry, J.-F., Dominique, J., and Lea, P. J. (2001). Amino acid metabolism. In ‘‘Plant Nitrogen’’
(P. J. Lea and J.-F. Morot-Gaudry, eds.), pp. 167–211. Springer-Verlag, Berlin.
Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999).
Antisense suppression of proline degradation improves tolerance to freezing and salinity in
Arabidopsis thaliana. FEBS Lett. 461, 205–210.
National Research Council (2001). ‘‘Nutrient Requirements of Dairy Cattle 7th,’’ p. 381.
Noctor, G., Novitskaya, L., Lea, P. J., and Foyer, C. H. (2002). Co-ordination of leaf minor amino acid
contents in crop species: Significance and interpretation. J. Exp. Bot. 53, 939–945.
Oliveira, I. C., Brenner, E., Chiu, J., Hsieh, M.-H., Kouranov, A., Lam, H.-M., Shin, M. J., and Coruzzi, G.
(2001). Metabolic and light regulation of metabolism in plants: Lessons from study of a single
biochemical pathway. Brazilian J. Med. Biol. Res. 34, 567–575.
Oliveira, I. C., Brears, T., Knight, T. J., Clark, A., and Coruzzi, G. M. (2002). Overexpression of cytosolic
glutamine synthetase. Relation to nitrogen, light, and photorespiration. Plant Physiol. 129,
1170–1180.
Onouchi, H., Nagami, Y., Haraguchi, Y., Nahkamoto, M., Nishimura, Y., Sakurai, R., Nagao, N.,
Kawasaki, D., Kadokura, Y., and Naito, S. (2005). Nascent peptide-mediated translation elongation
arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev. 19, 1799–1810.
Ortega, J. L., Temple, S. J., and Sengupta-Gopalan, C. (2001). Constitutive overexpression of cytosolic
glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the
level of RNA stability and protein turnover. Plant Physiol. 126, 109–121.
Ranocha, P., Mcneil, S. D., Ziemak, M. J., Li, C., Tarczynski, M. C., and Hanson, A. D. (2001). The
S-methylmethionine cycle in angiosperms: Ubiquity, antiquity and activity. Plant J. 25, 575–584.
Rao, S. S., Kochhar, S., and Kochhar, V. K. (1999). Analysis of photocontrol of aspartate kinase in barley
(Hordeum vulgare L.) seedlings. Biochem. Mol. Biol. Int. 47, 347–360.
Ravanel, S., Gakiere, B., Job, D., and Douce, R. (1998a). The specific features of methionine biosynthesis
and metabolism in plants. Proc. Natl. Acad. Sci. USA 95, 7805–7812.
Ravanel, S., Gakiere, B., Job, D., and Douce, R. (1998b). Cystathionine γ-synthase from Arabidopsis
thaliana: Purification and biochemical characterization of the recombinant enzyme overexpressed in
Escherichia coli. Biochem. J. 331, 639–648.
Reichenbach, A., and Wohlrab, F. (1985). Effects of α-aminoadipic acid on the glutamate-isolated P III of
the rabbit electroretinogram. Doc. Ophthalmol. 59, 359–364.
Ruuska, S. A., Girke, T., Benning, C., and Ohlrogge, J. B. (2002). Contrapuntal networks of gene
expression during Arabidopsis seed filling. Plant Cell 14, 1191–1206.
Sarrobert, C., Thibaud, M.-C., Contard-David, P., Gineste, S., Bechtold, N., Robaglia, C., and
Nussaume, L. (2000). Identification of an Arabidopsis thaliana mutant accumulating threonine resulting
from mutation in a new dihydrodipicolinate synthase gene. Plant J. 24, 357–367.
Schoenbeck, M. A., Temple, S. J., Trepp, G. B., Blumenthal, J. M., Samac, D. A., Gantt, J. S.,
Hernandez, G., and Vance, C. P. (2000). Decreased NADH glutamate synthase activity in nodules
and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase
transgene. J. Exp. Bot. 51, 29–39.
Shaul, O., and Galili, G. (1992a). Increased lysine synthesis in tobacco plants express high levels of
bacterial dihydrodipicolinate synthase in their chloroplasts. Plant J. 2, 203–209.
Shaul, O., and Galili, G. (1992b). Threonine overproduction in transgenic tobacco plants expressing a
mutant desensitized aspartate kinase of Escherichia coli. Plant Physiol. 100, 1157–1163.
Shaul, O., and Galili, G. (1993). Concerted regulation of lysine and threonine synthesis in tobacco plants
expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant
Mol. Biol. 23, 759–768.
Shotwell, M. A., and Larkins, B. A. (1989). The biochemistry and molecular biology of seed storage
proteins. In ‘‘The Biochemistry of Plants’’ (A. Marcus, ed.), pp. 297–345. Academic Press, San Diego.
Singh, B. K. (1999). Biosynthesis of valine, leucine, and isoleucine. In ‘‘Plant Amino Acids: Biochemistry
and Biotechnology’’ (B. K. Singh, ed.), pp. 227–247. Marcel Dekker, New York.
Somerville, C. R., and Ogren, W. L. (1980). Inhibition of photosynthesis in Arabidopsis mutants lacking
leaf glutamate synthase activity. Nature 286, 257–259.
Staswick, P. E. (1994). Storage proteins of vegetative plant tissues. Annu. Rev. Plant Physiol. Plant Mol.
Biol. 45, 303–322.
Stephanopoulos, G. (1999). Metabolic fluxes and metabolic engineering. Metab. Eng. 1, 1–11.
Stitt, M., Muller, C., Matt, P., Gibon, Y., Carillo, P., Morcuende, R., Scheible, W.-R., and Krapp, A.
(2002). Steps towards an integrated view of nitrogen metabolism. J. Exp. Bot. 53, 959–970.
Suzuki, A., Rioual, S., Lemarchand, S., Godfroy, N., Roux, Y., Boutin, J.-P., and Rothstein, S. (2001).
Regulation by light and metabolites of ferredoxin-dependent glutamate synthase in maize. Physiologia
Plantarum 112, 524–530.
Syed Rasheeduddin, A., and Mcdonald, C. E. (1974). Amino acid composition, protein fractions and
baking quality of triticale. In ‘‘Triticale: First Man-Made Cereal’’ (C. C. Tsen, ed.), pp. 137–149.
American Association of Cereal Chemists, Minnesota.
Tabe, L. M., and Droux, M. (2002). Limits to sulfur accumulation in transgenic lupin seeds expressing a
foreign sulfur-rich protein. Plant Physiol. 128, 1137–1148.
Tabe, L., Hagan, N., and Higgins, T. J. V. (2002). Plasticity of seed protein composition in response to
nitrogen and sulfur availability. Curr. Opin. Plant Biol. 5, 212–217.
Tarczynski, M. C., Bo, S., Changjiang, L., Leustek, T., Falco, C., and Allen, W. (2001). Control and
manipulation of sulfur amino acid metabolism in plants. In ‘‘Plant Foods for Human Health:
Manipulating Plant Metabolism to Enhance Nutritional Quality, Keystone Sympos’’ pp. 6.4–11.4.
Breckenridge, Colorado.
Temple, S. J., Knight, T. J., Unkefer, P. J., and Sengupta-Gopalan, C. (1993). Modulation of glutamine
synthetase gene expression in tobacco by the introduction of an alfalfa glutamine synthetase gene in
sense and antisense orientation: Molecular and biochemical analysis. Mol. Gen. Genet. 236, 315–325.
Ter Steege, M. W., Stulen, I., and Mary, B. (2001). Nitrogen and the environment. In ‘‘Plant Nitrogen’’
(P. J. Lea and J.-F. Morot-Gaudry, eds.), pp. 379–397. Springer-Verlag, Berlin.
Thum, K. E., Shasha, D. E., Lejay, L. V., and Coruzzi, G. M. (2003). Light and carbon signaling pathways
controlling genes in nitrogen assimilation: Modeling circuits of interaction. Plant Physiol. 132,
440–452.
Tozawa, Y., Hasegawa, H., Terakawa, T., and Wakasa, K. (2001). Characterization of rice anthranilate
synthase a-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing
a feedback-insensitive mutant of OASA1. Plant Physiol. 126, 1493–1506.
Vauterin, M., Frankard, V., and Jacobs, M. (1999). The Arabidopsis thaliana dhdps gene encoding
dihydrodipicolinate synthase, key enzyme of lysine biosynthesis, is expressed in a cell-specific
manner. Plant Mol. Biol. 39, 695–708.
Vincent, R., Fraisier, V., Chaillou, S., Limami, M. A., Deleens, E., Phillipson, B., Douat, C., Boutin, J.-P.,
and Hirel, B. (1997). Overexpression of a soybean gene encoding cytosolic glutamine synthetase in
shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and
plant development. Planta 201, 424–433.
Wang, F., and Tian, B. (2001). Neurospora NADP-glutamate dehydrogenases and its expression in
E. coli and transgenic plants. Chinese Sci. Bull. 46, 1029–1032.
Welinder, E., Textorius, O., and Nilsson, S. E. (1982). Effects of intravitreally injected DL-α-aminoadipic
acid on the c-wave of the D.C.-recorded electroretinogram in albino rabbits. Invest. Ophthalmol. Vis.
Sci. 23, 240–245.
White, C. L., Tabe, L. M., Dove, H., Hamblin, J., Young, P., Phillips, N., Taylor, R., Gulati, S., Ashes, J.,
and Higgins, T. J. V. (2000). Increased efficiency of wool growth and live weight gain in Merino
sheep fed transgenic lupin seed containing sunflower albumin. J. Sci. Food Agric. 81, 147–154.
Zeh, M., Casazza, A. P., Kreft, O., Roessner, U., Bieberich, K., Willmitzer, L., Hoefgen, R., and Hesse, H.
(2001). Antisense inhibition of threonine synthase leads to high methionine content in transgenic
potato plants. Plant Physiol. 127, 792–802.
Zhu-Shimoni, X. J., and Galili, G. (1998). Expression of an Arabidopsis aspartate kinase/homoserine
dehydrogenase gene is metabolically regulated by photosynthesis-related signals but not by nitrogenous
compounds. Plant Physiol. 116, 1023–1028.
Zhu-Shimoni, X. J., Lev-Yadun, S., Matthews, B., and Galili, G. (1997). Expression of an aspartate kinase
homoserine dehydrogenase gene is subject to specific spatial and temporal regulation in vegetative
tissues, flowers and developing seeds. Plant Physiol. 113, 695–706.
Zhu, X., and Galil, G. (2003). Increased lysine synthesis coupled with a knockout of its catabolism
synergistically boosts lysine content and also transregulates the metabolism of other amino acids in
Arabidopsis seeds. Plant Cell 15, 845–853.
Zhu, X., Tang, G., Granier, F., Bouchez, D., and Galili, G. (2001). A T-DNA insertion knockout of the
bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase gene elevates lysine
levels in Arabidopsis seeds. Plant Physiol. 126, 1539–1545.
Zhang, X.-H., Brotherton, J. E., Widholm, J. M., and Portis, A. R., Jr. (2001). Targeting a nuclear
anthranilate synthase α-subunit gene to the tobacco plastid genome results in enhanced tryptophan
biosynthesis. Return of a gene to its pre-endosymbiotic origin. Plant Physiol. 127, 131–141.
|