References
Agrawal, V. P., and Kolattukudy, P. E. (1978b). Mechanism of action of a wound-induced omegahydroxy fatty acid: NADP oxidoreductase isolated from potato tubers (Solanum tuberosum L.). Arch. Biochem. Biophys. 191, 466–478.
Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., Van Arkel, G., and Pereira, A. (2004). The shine clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticular properties, and confers drought resistance when overexpressed in Arabidopsis. Plant Cell 16, 2463–2480.
Aloni, B., Karni, L., Rylski, I., Cohen, Y., Lee, Y., Fuchs, M., Moreshet, S., and Yao, C. (1998). Cuticular cracking in pepper fruit. Effects of night temperature and humidity. J. Hortic. Sci. 73, 743–749.
Anderson, A. J., and Dawes, E. A. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54, 450–472.
Arai, Y., Nakashita, H., Doi, Y., and Yamaguchi, I. (2001). Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco. Plant Biotechnol. 18, 289–293.
Arai, Y., Nakashita, H., Suzuki, Y., Kobayashi, Y., Shimizu, T., Yasuda, M., Doi, Y., and Yamaguchi, I. (2002). Synthesis of a novel class of polyhydroxyalkanoates in Arabidopsis peroxisomes, and their use in monitoring short-chain-length intermediates of β-oxidation. Plant Cell Physiol. 43, 555–562.
Becraft, P. W., Stinard, P. S., and Mccarty, D. R. (1996). CRINKLY4: A TNKR-like receptor kinase involved in epidermal maize differentiation. Science 273, 1406–1409.
Beneviste, I., Tijet, N., Adas, F., Philipps, G., Salaun, J. P., and Durst, F. (1998). CYP86A1 from Arabidopsis thaliana encodes a cytochrome P450-dependent fatty acid omega-hydroxylase. Biochem. Biophys. Res. Commun. 243, 688–693.
Bernards, M. A. (2002). Demystifying suberin. Can. J. Bot. 80, 227–240.
Bernards, M. A., and Lewis, N. G. (1998). The macromolecular aromatic domain in suberized tissue: A changing paradigm. Phytochemistry 47, 915–933.
Bleé, E., and Schuber, F. (1990). Efficient epoxidation of unsaturated fatty acids by a hydroperoxidedependent oxygenase. J. Biol. Chem. 265, 12887–12894.
Bleé, E., and Schuber, F. (1992). Occurrence of fatty acid epoxide hydrolases in soybean (Glycine max.). Biochem. J. 282, 711–714.
Bleé, E., and Schuber, F. (1993). Biosynthesis of cutin monomers: Involvement of a lipoxygenase/ peroxygenase pathway. Plant J. 4, 113–123.
Bleé, E., and Schuber, F. (1995). Stereocontrolled hydrolysis of the linoleic acid monoepoxide regioisomers catalyzed by soybean epoxide hydrolase. Eur. J. Biochem. 230, 229–234.
Bohmert, K., Balbo, I., Kopka, J., Mittendorf, V., Nawrath, C., Poirier, Y., Tischendorf, G., Trethewey, R. N., and Willmitzer, L. (2000). Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up 4% of their fresh weight. Planta 211, 841–845.
Bonaventure, G., Beisson, F., Ohlrogge, J., and Pollard, M. (2004). Analysis of the aliphatic monomer composition of polyesters associated with Arabidopsis epidermis: Occurrence of octadeca-cis-6, cis-9-diene-1,18-dioate as the major component. Plant J. 40, 920–930.
Braunegg, G., Lefebvre, G., and Genser, K. F. (1998). Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. J. Biotechnol. 65, 127–161.
Broun, P., Poindexter, P., Osborne, E., Jiang, C. Z., and Riechmann, J. L. (2004). WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 4706–4711.
Cabello-Hurtado, F., Batard, Y., Salau¨ n, J.-P., Durst, F., Pinot, F., and Werck-Reichart, D. (1998). Cloning, expression in yeast, and functional characterization of CYP81B1, a plant cytochrome P450 that catalyzes in-chain hydroxylation of fatty acids. J. Biol. Chem. 273, 7260–7267.
Chen, X., Goodwin, S. M., Boroff, V. L., Liu, X., and Jenks, M. A. (2003). Cloning and characterization of the wax2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15, 1170–1185.
Cordeiro, N., Belgacem, M. N., Gandini, A., and Neto, C. P. (1997). Urethanes and polyurethanes from suberin. 1. Kinetic study. Ind. Crop Prod. 6, 163–167.
Cordeiro, N., Belgacam, N. M., Gandini, A., and Pascal Neto, C. (1998). Cork suberin as a new source of chemical: 2. Crystallinity, thermal and rheological properties. Bioresour. Technol. 63, 153–158.
Cordeiro, N., Blayo, A., Belgacem, N. M., Gandini, A., Pascoal Neto, C., and Lenest, J.-F. (2000). Cork suberin as an additive in offset lithographic printing. Ind. Crop Prod. 11, 63–71.
Croteau, R., and Kolattukudy, P. E. (1973). Enzymatic biosynthesis of a hydroxy fatty acid polymer, cutin, by a particulate preparation from Vicia faba epidermis. Biochem. Biophys. Res. Commun. 52, 863–869.
de Koning, G. (1995). Physical properties of bacterial poly((R)3-hydroxyalkanoates). Can. J. Microbiol. 41(Suppl. 1), 303–309.
Domergue, F., Bessoule, J.-J., Moreau, P., Lessire, R., and Cassagne, C. (1998). Recent advances in plant fatty acid elongation. In ‘‘Plant Lipid Biosynthesis’’ (J. L. Harwood, ed.), pp. 185–220. Cambridge University Press, Cambridge.
Eccleston, V. S., and Ohlrogge, J. B. (1998). Expression of lauroyl-acyl carrier protein thioesterase in Brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation. Plant Cell 10, 613–621.
Eccleston, V. S., Cranmer, A. M., Voelker, T. A., and Ohlrogge, J. B. (1996). Medium-chain fatty acid biosynthesis and utilization in Brassica napus plants expressing lauroyl-acyl carrier protein thioesterase. Planta 198, 46–53.
Esau, K. (1977). ‘‘Anatony of Seed Plants,’’ 2nd Edn. Wiley, New York.
Franke, R., Briesen, I., Wojciechowski, T., Faust, A., Yephremov, A., Nawrath, C., and Schreiber, L. (2005). Apoplastic polyesters in Arabidopsis surface tissues—A typical suberin and a particular cutin. Phytochemistry 66, 2643–2658.
Fukui, T., Shiomi, N., and Doi, Y. (1998). Expression and characterization of (R)-specific enoyl coenzyme a hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J. Bacteriol. 180, 667–673.
Garcia-Olemedo, F., Molina, A., Segura, A., and Moreno, M. (1995). The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol. 3, 72–74.
Grac¸a, J., and Pereira, H. (1997). Cork suberin: A glyceryl-based polyester. Holzforschung 51, 225–234.
Grac¸a, J., and Pereira, H. (2000a). Methanolysis of bark suberins: Analysis of glycerol and acid monomers. Phytochem. Anal. 11, 45–51.
Grac¸a, J., and Pereira, H. (2000b). Suberin in potato periderm: Glycerol, long-chain monomers, and glyceryl and feruloyl dimers. J. Agric. Food Chem. 48, 5476–5483.
Grac¸a, J., and Pereira, H. (2000c). Diglycerol alkenedioates in suberin: Building units of a poly(acylglycerol) polyester. Biomacromolecules 1, 519–522.
Grac¸a, J., Schreiber, L., Rodrigues, J., and Pereira, H. (2002). Glycerol and glyceryl esters of ω-hydroxyacids in cutins. Phytochemistry 61, 205–215.
Hahn, J. J., Eschenlauer, A. C., Sleytr, U. B., Somers, D. A., and Srienc, F. (1999). Peroxisomes as sites for synthesis of polyhydroxyalkanoates in transgenic plants. Biotechnol. Prog. 15, 1053–1057.
Hamberg, M., and Hamberg, G. (1990). Hydroperoxide-dependent epoxidation of unsaturated fatty acids in the broad bean (Vicia faba L.). Arch. Biochem. Biophys. 283, 409–416.
Hamberg, M., Sanz, A., and Castresana, C. (1999). Alpha-oxidation of fatty acids in higher plants: Identification of a pathogen-inducible oxygenase (PIOX) as an alpha-dioxygenase and biosynthesis of 2-hydroperoxylinolenic acid. J. Biol. Chem. 274, 24503–24513.
Hollenbach, B., Schreiber, L., Hartung, W., and Dietz, K.-J. (1997). Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: Implications for the involvement of lipid transfer proteins in wax assembly. Planta 203, 9–19.
Holloway, P. J. (1982). Structure and histochemistry of plant cuticular membranes: An overview. In ‘‘The Plant Cuticle’’ (D. F. Cutler, K. L. Alvin, and C. E. Price, eds.), pp. 1–32. Academic Press, London.
Hooks, M. A., Fleming, Y., Larson, T. R., and Graham, I. A. (1999). No induction of β-oxidation in leaves of Arabidopsis that over-produce lauric acid. Planta 207, 385–392.
Houmiel, K. L., Slater, S., Broyles, D., Casagrande, L., Colburn, S., Gonzalez, K., Mitsky, T. A., Reiser, S. E., Shah, D., Taylor, N. B., Tran, M., Valentin, H. E., et al. (1999). Poly(beta-hydroxybutyrate) production in oilseed leucoplasts of Brassica napus. Planta 209, 547–550.
Huijberts, G. N. M., Eggink, G., De Waard, P., Huisman, G. W., and Witholt, B. (1992). Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl. Environ. Microbiol. 58, 536–544.
Jeffree, C. E. (1996). Structure and ontogeny of plant cuticles. In ‘‘Plant Cuticles: An Integrated Functional Approach’’ (G. Kertiens, ed.), pp. 33–82. BIOS Scientific Publishers Limited, Oxford.
Jendrossek, D. (2002). Microbial degradation of polyesters. Adv. Biochem Eng. Biotechnol. 71, 293–325.
Jin, P., Guo, T., and Becraft, P. W. (2000). The maize CR4 receptor-like kinase mediates a growth factorlike differentiation response. Genesis 27, 104–116.
John, M. E., and Keller, G. (1996). Metabolic pathway engineering in cotton: Biosynthesis of polyhydroxybutyrate in fiber cells. Proc. Natl. Acad. Sci. USA 93, 12768–12773.
Kader, J.-C. (1996). Lipid-transfer proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 627–654.
Kahn, R. A., and Durst, F. (2000). Function and evolution of plant cytochrome P450. In ‘‘Evolution of Metabolic Pathways’’ (J. T. Romeo, R. Ibrahim, L. Varin, and V. de Luca, eds.), pp. 151–189, Recent Advances in Phytochemistry 34, Elsevier Science Ltd, London.
Katavic, V., Reed, D. W., Taylor, D. C., Giblin, E. M., Barton, D. L., Zou, J., Mackenzie, S. L., Covello, P. S., and Kunst, L. (1995). Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol. 108, 399–409.
Kerstiens, G. (1996). Diffusion of water vapour and gases across cuticles and through stomatal pores presumed closed. In ‘‘Plant Cuticles: An Integrated Functional Approach’’ (G. Kertiens, ed.), pp. 121–134. BIOS Scientific Publishers Limited, Oxford.
Kim, Y. B., and Lenz, R. W. (2002). Polyesters from microorganisms. Adv. Biochem. Eng. Biotechnol. 71, 51–79.
Kolattukudy, P. E. (1981). Structure, biosynthesis, and biodegradation of cutin and suberin. Annu. Rev. Plant. Physiol. 32, 539–567.
Kolattukudy, P. E. (2001). Polyesters in higher plants. Adv. Biochem. Eng. Biotechnol. 71, 1–49.
Kourtz, L., Dillon, K., Daughtry, S., Madison, L. L., Peoples, O., and Snell, K. D. (2005). A novel thiolasereductase gene fusion promotes the production of polyhydroxybutyrate in Arabidopsis. Plant Biotechnol. J. 3, 435–447.
Krizkova, L., Lopes, M. H., Polonyi, J., Belicova, A., Dobias, J., and Ebringer, L. (1999). Antimutagenicity of a suberin extract from Quercus suber cork. Mutat. Res. 446, 225–230.
Krolikowski, K. A., Victor, J. L., Wagler, T. N., Lolle, S. J., and Pruitt, R. E. (2003). Isolation and characterization of the Arabidopsis organ fusion gene HOTHEAD. Plant J. 35, 501–511.
Kunst, L., and Samuels, A. L. (2003). Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42, 51–80.
Kurata, T., Kawabata-Awai, C., Sakuradani, E., Shimizu, S., Okada, K., and Wada, T. (2003). The YOREYORE gene regulates multiple aspects of epidermal cell differentiation in. Arabidopsis. Plant J. 36, 55–66.
Kurdyukov, S., Faust, A., Trenkamp, S., Ba¨ r, S., Franke, R., Efremova, N., Tietjen, K., Schreiber, L., Saedler, H., and Yephremov, A. (2006a). Genetic and biochemical evidence for involvement of α,ω-dicarboxylic acids in the formation of extracellular matrix. Planta 224, 315–329.
Lageveen, R. G., Huisman, G. W., Preusting, H., Ketelaar, P., Eggink, G., and Witholt, B. (1995). Formation of polyesters by Pseudomonas oleovorans: Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl. Environ. Microbiol. 54, 2924–2932.
Le Bouquin, R., Skarbs, M., Kahn, R., Beneviste, I., Salau¨ n, J.-P., Schreiber, L., Durst, F., and Pinot, F. (2001). CYP94A5, a new cytochrome P450 from Nicotiana tabacum is able to catalyze the oxidation of fatty acids to the omega-alcohol and to the corresponding diacid. Eur. J. Biochem. 268, 3083–3090.
Lolle, S. J., and Cheung, A. Y. (1993). Promiscuous germination and growth of wildtype pollen from Arabidopsis and related species on the shoot of the Arabidopsis mutant, fiddlehead. Dev. Biol. 155, 250–258.
Lolle, S. J., and Pruitt, R. E. (1999). Epidermal cell interactions: A case for local talk. Trends Plant Sci. 4, 14–20.
Lolle, S. J., Berlyn, G. P., Engstrom, E. M., Krolikowski, K. A., Reiter, W. D., and Pruitt, R. E. (1997). Developmental regulation of cell interactions in the Arabidopsis fiddlehead1 mutant: A role for the epidermal cell wall and cuticle. Dev. Biol. 189, 311–321.
Lolle, S. J., Hsu, W., and Pruitt, R. E. (1998). Genetic analysis of organ fusion in Arabiopsis thaliana. Genetics 149, 607–619.
Lö ssl, A., Eibl, C., Harloff, H.-J., Jung, C., and Koop, H.-U. (2003). Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): Significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep. 21, 891–899.
Lö ssl, A., Bohmert, K., Harloff, H., Eibl, C., Mühlbauer, S., and Koop, H.-U. (2005). Inducible transactivation of plastid transgenes: Expression of the R. eutropha phb operon in transplastomic tobacco. Plant Cell Physiol. 46, 1462–1471.
Matsumoto, K., Nagao, R., Murata, T., Arai, Y., Kichise, T., Nakashita, H., Taguchi, S., Shimada, H., and Doi, Y. (2005). Enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production in the transgenic Arabidopsis thaliana by the in vitro evolved highly active mutants of polyhydroxyalkanoate (PHA) synthase from Aeromonas caviae. Biomacromolecules 6, 2126–2130.
Menzel, G., Harloff, H.-J., and Jung, H. -C. (2003). Expression of bacterial poly(3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L.). Appl. Microbiol. Biotechnol. 60, 571–576.
Mittendorf, V., Robertson, E. J., Leech, R. M., KrMüger, N., SteinbMüchel, A., and Poirier, Y. (1998). Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Proc. Natl. Acad. Sci. USA 95, 13397–13402.
Mittendorf, V., Bongcam, V., Allenbach, L., Coullerez, G., Martini, N., and Poirier, Y. (1999). Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through β-oxidation. Plant J. 20, 45–55.
Moire, L., Schmutz, A., Buchala, A., Yan, B., Stark, R., and Ryser, U. (1999). Glycerol is a suberin monomer. New experimental evidence for an old hypothesis. Plant Physiol. 119, 1137–1146.
Moire, L., Rezzonico, E., Goepfert, S., and Poirier, Y. (2004). Impact of unusual fatty acid synthesis on futile cycling through β-oxidation and on gene expression in transgenic plants. Plant Physiol. 134, 432–442.
Molina, A., and Garcia-Olmedo, F. (1997). Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J. 12, 669–675.
Nakashita, H., Arai, Y., Yoshioka, K., Fukui, T., Doi, Y., Usami, R., Horikoshi, K., and Yamaguchi, I. (1999). Production of biodegradable polyester by a transgenic tobacco. Biosci. Biotechnol. Biochem. 63, 870–874.
Nakashita, H., Arai, Y., Shikanai, T., Doi, Y., and Yamaguchi, I. (2001). Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci. Biotechnol. Biochem. 65, 1688–1691.
Nawrath, C. (2002). The biopolymers cutin and suberin. In ‘‘The Arabidopsis Book’’ (C. Somerville and E. Meyerowitz, eds.), pp. 1–15. American Society of Plant Physiologists, Rockville.
Nawrath, C. (2006). Unraveling the complex network of cuticular structure and function. Curr. Opin. Plant Biol. 9, 281–287.
Nawrath, C., Poirier, Y., and Somerville, C. R. (1994). Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high-levels of polymer accumulation. Proc. Natl. Acad. Sci. USA 91, 12760–12764.
Pighin, J. A., Zheng, H. Q., Balakshin, L. J., Goodman, I. P., Western, T. L., Jetter, R., Kunst, L., and Samuels, A. L. (2004). Plant cuticular lipid export requires an ABC transporter. Science 306, 702–704.
Pinot, F., SalaMün, J.-P., Bosch, H., Lesot, A., Mioskowski, C., and Durst, F. (1992). Omega-hydroxylation of Z-9-octadecenoic, Z-9,10-epoxistearic and 9,10-dihydroxystearic acids by microsomal cytochrome P450 systems from Vicia sativa. Biochem. Biophys. Res. Commun. 184, 183–193.
Pinot, F., Beneviste, I., SalaMün, J. P., and Durst, F. (1998). Methyl jasmonate induces lauric acid omegahydroxylase activity and accumulation of CYP94A1 transcripts but does not affect epoxide hydrolase activities in Vicia sativa seedlings. Plant Physiol. 118, 1481–1486.
Poirier, Y. (1999). Production of new polymeric compounds in plants. Curr. Opin. Biotechnol. 10, 181–185.
Poirier, Y. (2001). Production of polyesters in transgenic plants. Adv. Biochem. Eng. Biotechnol. 71, 209–240.
Poirier, Y. (2002). Poylhydroxyalkanoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. Prog. Lipid Res. 41, 131–155.
Poirier, Y., Dennis, D. E., Klomparens, K., and Somerville, C. (1992a). Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256, 520–523.
Poirier, Y., Dennis, D., Klomparens, K., Nawrath, C., and Somerville, C. (1992b). Perspectives on the production of polyhydroxyalkanoates in plants. FEMS Microbiol. Rev. 103, 237–246.
Poirier, Y., Nawrath, C., and Somerville, C. (1995a). Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology 13, 142–150.
Poirier, Y., Schechtman, L. A., Satkowski, M. M., Noda, I., and Somerville, C. (1995b). Synthesis of high molecular weight poly([R]-(—)-3-hydroxybutyrate) in transgenic Arabidopsis thaliana plant cells. Int. J. Biol. Macromol. 17, 7–12.
Poirier, Y., Ventre, G., and Caldelari, D. (1999). Increased flow of fatty acids towards β-oxidation in developing seeds of Arabidopsis thaliana deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain fatty acids. Plant Physiol. 121, 1359–1366.
Pruitt, R. E., Vielle-Calzada, J.-P., Ploense, S. E., Grossniklaus, U., and Lolle, S. J. (2000). FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc. Natl. Acad. Sci. 97, 1311–1316.
Pyee, J., and Kolattukudy, P. E. (1995). The gene for the major cuticular wax-associated protein and three homologous genes from broccoli (Brassica oleracea) and their expression patterns. Plant J. 7, 49–59.
Rehm, B. H., Krü ger, N., and Steinbüchel, A. (1998). A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. J. Biol. Chem. 273, 24044–24051.
Reina, J. J., and Heredia, A. (2001). Plant cutin biosynthesis: The involvement of a new acyltransferase. Trends Plant Sci. 6, 296.
Reiser, S. E., Mitsky, T. A., and Gruys, K. J. (2000). Characterization and cloning of an (R)-specific trans- 2,3-enoylacyl-CoA hydratase from Rhodospirillum rubrum and use of this enzyme for PHA production in. Escherichia coli. Appl. Microbiol. Biotechnol. 53, 209–218.
Reusch, R. N. (1999). Polyphosphate/poly-(R)-3-hydroxybutyrate) ion channels in cell membranes. Prog. Mol. Subcell. Biol. 23, 151–182.
Reusch, R. N., Huang, R., and Bramble, L. L. (2002). Poly-3-hydroxybutyrate/polyphosphate complexes form voltage-activated Ca2+ channels in the plasma membranes of Escherichia coli. Biophys. J. 527, 319–322.
Rocha, S. M., Goodfellow, B. J., Delgadillo, I., Neto, C. P., and Gil, A. M. (2001). Enzymatic isolation and structural characterization of polymeric suberin of cork from Quercus suber L. Int. J. Biol. Macromol. 28, 107–119.
Romano, A., Vreugdenhil, D., Jamar, D., van der Plas, L. H. W., De Roo, G., Witholt, B., Eggink, G., and Mooibroek, H. (2003). Evidence of medium-chain-length polyhydroxyoctanoate accumulation in transgenic potato lines expressing the Pseudomonas oleovorans Pha-C1 polymerase in the cytoplasm. Biochem. Eng. J. 3728, 1–9.
Romano, A., van der Plas, L. H. W., Witholt, B., Eggink, G., and Mooibroek, H. (2005). Expression of poly-3-(R)-hydroxyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Planta 220, 455–464.
Saruul, P., Srienc, F., Somers, D. A., and Samac, D. A. (2002). Production of a biodegradable plastic polymer, poly-beta-hydroxybutyrate, in transgenic alfalfa. Crop Sci. 42, 919–927.
Schnurr, J., Shockey, J., and Browse, J. (2004). The acyl-CoA synthetase encoded by lacs2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16, 629–642.
Schreiber, L., Hartmann, K., Skrabs, M., and Zeier, J. (1999). Apoplastic barriers in roots: Chemical composition of endodermal and hypodermal cell walls. J. Exp. Bot. 50, 1267–1280.
Schreiber, L., Skrabs, M., Hartmann, K., Becker, D., Cassagne, C., and Lessire, R. (2000). Biochemical and molecular characterization of corn (Zea mays L.) root elongases. Biochem. Soc. Trans. 28, 647–649.
Schubert, P., Steinbüchel, A., and Schlegel, H. G. (1988). Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170, 5837–5847.
Slater, S. C., Voige, W. H., and Dennis, D. E. (1988). Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J. Bacteriol. 170, 4431–4436.
Slater, S., Houmiel, K. L., Tran, M., Mitsky, T. A., Taylor, N. B., Padgette, S. R., and Gruys, K. J. (1998). Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J. Bacteriol. 180, 1979–1987.
Slater, S., Mitsky, T. A., Houmiel, K. L., Hao, M., Reiser, S. E., Taylor, N. B., Tran, M., Valentin, H. E., Rodriguez, D. J., Stone, D. A., Padgette, S. R., Kishore, G., et al. (1999). Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat. Biotechnol. 17, 1011–1016.
Steinbüchel, A. (1991). Polyhydroxyalkanoic acids. In ‘‘Novel Biomaterials from Biological Sources’’ (D. Byrom, ed.), pp. 123–126. MacMillan, New York.
Steinbüchel, A., and Fu¨ chtenbusch, B. (1998). Bacterial and other biological systems for polyester production. Trends Biotechnol. 16, 419–427.
Steinbüchel, A., and Hein, S. (2001). Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv. Biochem. Eng. Biotechnol. 71, 81–123.
Steinbüchel, A., and Lütke-Eversloh, T. (2003). Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 3734, 1–16.
Steinbüchel, A., and Schlegel, H. G. (1991). Physiology and molecular genetics of poly(b-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol. Microbiol. 5, 535–542.
Sudesh, K., and Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 25, 1503–1555.
Suh, M. C., Samuels, A. L., Jetter, R., Kunst, L., Pollard, M., Ohlrogge, J., and Reisson, F. (2005). Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol. 139, 1649–1665.
Suzuki, Y., Kurano, K., Arai, Y., Nakashita, H., Doi, Y., Usami, R., Horikoshi, K., and Yamaguchi, I. (2002). Enzyme inhibitors to increase poly-3-hydroxybutyrate production by transgenic tobacco. Biosci. Biotechnol. Biochem. 66, 2537–2542.
Taguchi, K., Aoyagi, Y., Matsusaki, H., Fukui, T., and Doi, Y. (1999). Co-expression of 3-ketoacyl-ACP reductase and polyhydroxyalkanoate synthase genes induces PHA production in Escherichia coli HB101 strain. FEMS Microbiol. Lett. 176, 183–190.
Tanaka, H., Onouchi, H., Kondo, M., Hara-Nishimura, I., Nishimura, M., Machida, C., and Machida, Y. (2001). A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development 128, 4681–4689.
Tanaka, H., Watanabe, M., Watanabe, D., Tanaka, T., Machida, C., and Machida, Y. (2002). ACR4, a putative receptor kinase gen of Arabidopsis thaliana, that is expressed in the outer cell layers of embryos and plants, is involved in proper embryogenesis. Plant Cell Physiol. 43, 419–428.
Tanaka, T., Tanaka, H., Machida, C., Watanabe, M., and Machida, Y. (2004). A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. Plant J. 37, 139–146.
Tijet, N., Helvig, C., Pinot, F., Le Bouquin, R., Lesot, A., Durst, F., Salau¨ n, J. P., and Beneviste, I. (1998). Functional expression in yeast and characterization of a clofibrate-inducible plant cytochrome P450 (CYP94A1) involved in cutin monomer synthesis. Biochem. J. 332, 583–589.
Tsuge, T., Fukui, T., Matsusaki, H., Taguchi, S., Kobayashi, G., Ishizaki, A., and Doi, Y. (2000). Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiol. Lett. 184, 193–198.
Villena, J. F., Dominguez, E., Stewart, D., and Heredia, A. (1999). Characterization and biosynthesis of non-degradable polymers in plant cuticles. Planta 208, 181–187.
Walton, T. J., and Kolattukudy, P. E. (1972). Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas-chromatography and mass spectrometry. Biochemistry 11, 1885–1897.
Watanabe, M., Tanaka, H., Watanabe, D., Machida, C., and Machida, Y. (2004). The ACR4 receptor-like kinase is required for surface formation of epidermis-related tissues in Arabidopsis thaliana. Plant J. 39, 298–308.
Wellesen, K., Durst, F., Pinot, F., Beneviste, I., Nettesheim, K., Wisman, E., Steiner-Lange, S., Saedler, H., and Yephremov, A. (2001). Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid omega-hydroxylation in development. Proc. Natl. Acad. Sci. 98, 10694–10699.
Wro´ bel, M., Zebrowski, J., and Szopa, J. (2004). Polyhydroxybutyrate synthesis in transgenic flax. J. Biotechnol. 107, 41–54.
Xiao, F., Goodwin, S. M., Xiao, Y., Sun, Z., Baker, D., Tang, X., Jenks, M. A., and Zhou, J.-M. (2004). Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J. 23, 2903–2913.
Yephremov, A., and Schreiber, L. (2005). The dark side of the cell wall: Molecular genetics of plant cuticle. Plant Biosyst. 139, 74–79. Yephremov, A., Wisman, E., Huijser, P., Huijser, C., Wellesen, K., and Saedler, H. (1999). Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11, 2187–2201.