Available Boron


Historical Information
  Determination of Essentiality
  Functions in Plants
    - Root Elongation and Nucleic Acid Metabolism
    - Protein, Amino Acid, and Nitrate Metabolism
    - Sugar and Starch Metabolism
    - Auxin and Phenol Metabolism
    - Flower Formation and Seed Production
    - Membrane Function
Forms and Sources of Boron in Soils
  Total Boron
  Available Boron
  Fractionation of Soil Boron
  Soil Solution Boron
  Hydrated Boron Minerals
Diagnosis of Boron Status in Plants
  Deficiency Symptoms
    - Field and Horticultural Crops
    - Other Crops
  Toxicity Symptoms
    - Field and Horticultural Crops
    - Other Crops
Boron Concentration in Crops
  Plant Part and Growth Stage
  Boron Requirement of Some Crops
Boron Levels in Plants
Soil Testing for Boron
  Sampling of Soils for Analysis
  Extraction of Available Boron
    - Hot-Water-Extractable Boron
    - Boron from Saturated Soil Extracts
    - Other Soil Chemical Extractants
  Determination of Extracted Boron
    - Colorimetric Methods
    - Spectrometric Methods
Factors Affecting Plant Accumulation of Boron
  Soil Factors
    - Soil Acidity, Calcium, and Magnesium
    - Macronutrients, Sulfur, and Zinc
    - Soil Texture
    - Soil Organic Matter
    - Soil Adsorption
    - Soil Salinity
  Other Factors
    - Plant Genotypes
    - Environmental Factors
    - Method of Cultivation and Cropping
    - Irrigation Water
Fertilizers for Boron
  Types of Fertilizers
  Methods and Rates of Application

Available boron, measured by various extraction methods, in agricultural soils varies from 0.5 to 5 mg kg-1. Most of the available boron in soil is believed to be derived from sediments and plant material. Gupta (46) reported that available boron on Podzol soils from eastern Canada ranged from 0.38 to 4.67 mg kg-1. Few studies have been conducted that attempt to identify solid-phase controls on boron solubility in soils. Most of the common boron minerals are much too soluble for such purposes (48).