Autosomal Linkage and Crossing Over

Autosomal Linkage and Crossing Over

Linkage
Since Mendel’s laws were rediscovered in 1900, it became clear that, contrary to Mendel’s second law, not all factors segregate independently. Indeed, many traits are inherited together. Since the number of chromosomes in any organism is relatively small compared with the number of traits, each chromosome must contain many genes. All genes present on a chromosome are said to be linked. Linkage simply means that the genes are on the same chromosome, and all genes present on homologous chromosomes belong to the same linkage groups. Therefore there should be as many linkage groups as there are chromosome pairs.

Geneticists commonly use the word “linkage” in two somewhat different senses. Sex linkage refers to inheritance of a trait on the sex chromosomes, and thus its phenotypic expression depends on the sex of the organism and the factors already discussed. Autosomal linkage, or simply, linkage, refers to inheritance of the genes on a given autosomal chromosome. Letters used to represent such genes are normally written without a slash mark between them, indicating that they are on the same chromosome. For example, AB/ab shows that genes A and B are on the same chromosome. Interestingly, Mendel studied seven characteristics of garden peas, which assorted independently because they were on seven different chromosomes. If he had studied eight characteristics, he would not have found independent assortment in two of the traits because garden peas have only seven pairs of homologous chromosomes.

In Drosophila, in which this principle has been studied most extensively, there are four linkage groups that correspond to the four pairs of chromosomes found in these fruit flies. Usually, small chromosomes have small linkage groups, and large chromosomes have large groups.

Crossing Over
Linkage, however, is usually not complete. If we perform an experiment in which animals such as Drosophila are crossed, we find that linked traits separate in some percentage of the offspring. Separation of alleles located on the same chromosome occurs because of crossing over.

As described earlier, during the protracted prophase of the first meiotic versa (Figure 5-10). Each chromosome consists of two sister chromatids held together by means of a proteinaceous structure called a synaptonemal complex. Breaks and exchanges occur at corresponding points on nonsister chromatids. (Breaks and exchanges also occur between sister chromatids but usually have no genetic significance because sister chromatids are identical.) Crossing over is a means for exchanging genes between homologous chromosomes and as such greatly increases the amount of genetic recombination. The frequency of crossing over varies depending on the species, but usually at least one and often several crossovers occur each time chromosomes pair.

Because the frequency of recombination is proportional to the distance between loci, the comparative linear position of each locus can be determined. Genes located far apart on very large chromosomes may assort independently because the probability of a crossover occurring between them in each meiosis is close to 100%. Such genes are found to be carried on the same chromosome only because each one is genetically linked to additional genes located physically between them on the chromosome. Laborious genetic experiments over many years have produced gene maps that indicate the positions of more than 500 genes distributed on the four chromosomes of Drosophila melanogaster.