Akihisa, T. K., Yasukawa, M., Yamaura, M., Ukiya, Y., Kimura, N., Shimizu, N., and Arai, K. (2000). Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. J. Agric. Food Chem. 48, 2313–2319.

Arigoni, D., Sagner, S., Latzel, C., Eisenreich, W., Bacher, A., and Zenk, M. H. (1997). Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc. Natl. Acad. Sci. 94, 10600–10605.

Arnqvist, L., Dutta, P. C., Jonsson, L., and Sitbon, F. (2003). Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a typ1 sterol methyltransferase cDNA. Plant Physiol. 131, 1792–1799.

Awad, A. B., and Fink, C. S. (2000). Phytosterols as anticancer dietary components: Evidence and mechanism of action. J. Nutr. 130, 2127–2130.

Bach, T. J. (1995). Some new aspects of isoprenoid biosynthesis in plants—a review. Lipids 30, 191–202.

Bach, T. J., and Lichtenthaler, H. K. (1983). Inhibition by mevinolin of plant growth, sterol formation and pigment accumulation. Physiol. Plant 59, 50–60.

Behmer, S. T., and Nes, W. D. (2003). Insect sterol nutrition and physiology: A global overview. Adv. Insect Physiol. 31, 1–72.

Benveniste, P. (2004). Biosynthesis and accumulation of sterols. Annu. Rev. Plant Biol. 55, 429–457.

Bloch, K. E. (1983). Sterol structure-membrane function. CRC Crit. Rev. Biochem. 14, 47–82.

Bush, P. B., and Grunwald, C. (1973). Effect of light on mevalonic acid incorporation into the phytosterols of Nicotiana tabacum L. seedlings. Plant Physiol. 51, 110–114.

Carland, F. M., Fujiko, S., Takatsuto, S., Yoshida, S., and Nelson, T. (2002). The identification of CVP1 reveals a role for sterols in vascular patterning. The Plant Cell 14, 2045–2058.

Castle, M., Blondin, G., and Nes, W. R. (1963). Evidence for the origin of the ethyl group of b-sitosterol. J. Am. Chem. Soc. 85, 3306–3308.

Chappell, J., Wolf, F., Proulx, J., Cuellar, R., and Saunders, C. (1995). Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol. 109, 1337–1343.

Clark, A. J., and Bloch, K. (1959). Function of sterols in Dermetes vulpinus. J. Biol. Chem. 234, 2583–2588.

Clouse, S. D. (2002). Arabidopsis mutants reveal multiple roles for sterols in plant development. The Plant Cell 14, 1995–2000.

De-Eknamkul, W., and Potduang, B. (2003). Biosynthesis of β-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. Phytochemistry 62, 389–398.

Devarenne, T. P., Ghosh, A., and Chappell, J. (2002). Regulation of squalene synthase, a key enzyme of sterol biosynthesis in tobacco. Plant Physiol. 129, 1095–1106.

Diener, A. C., Li, H., Zhou, W., Whoriskey, W. J., Nes, W. D., and Fink, G. R. (2000). Sterol methyltransferase 1 controls the level of cholesterol in plants. The Plant Cell 12, 853–870.

Fonteneau, P.,Hartmann,M. A., and Benveniste, P. (1977).A24-methylene lophenol C-28 methyltransferase from suspension cultures of bramble cells. Plant Sci. Lett. 10, 147–155.

Goad, L. J., Lenton, J. R., Knapp, F. F., and Goodwin, T. W. (1974). Phytosterol side-chain biosynthesis. Lipids 9, 582–594.

Goodwin, T. W. (1981). Biosynthesis of plant sterols and other triterpenoids. In ‘‘Biosynthesis of Isoprenoid Compounds’’ ( J. W. Porter and S. L. Spurgeon, eds.), Vol. 1, pp. 444–480. Wiley and Sons, New York.

Guo, D., Venkatramesh, M., and Nes, W. D. (1995). Developmental regulation of sterol biosynthesis in Zea mays. Lipids 30, 203–219.

Guo, D., Jia, Z., and Nes, W. D. (1996). Stereochemistry of hydrogen migration from C-24 to C-25 during phytosterol biomethylation. J. Am. Chem. Soc. 118, 8507–8508.

Harker, M., Hellyer, A., Clayton, J. C., Duvoix, A., Lanot, A., and Stafford, R. (2003). Co-ordinate regulation of sterol biosynthesis activity during accumulation of sterols in developing rape and tobacco seeds. Planta 216, 707–715.

Hase, Y., Fujioka, S., Yoshida, S., Sun, G., Umeda, M., and Tanaka, A. (2005). Ectopic endoreduplication caused by sterol alteration results in serrated petals in Arabidopsis. J. Exp. Bot. 56, 1263–1268.

Haughan, P. A., Lenton, J. R., and Goad, L. J. (1987). Paclobutrazol inhibition of sterol biosynthesis in cell suspension culture and evidence of an essential role for 24-ethylsterol in plant cell division. Biochem. Biophys. Res. Commun. 146, 510–516.

Hemmerlin, A., Hoeffler, J.-F.,Meyer, O., Tritsch, D., Kagan, I. A., Grosdemange-Billiard, C., Rohmer, M., and Bach, T. J. (2003). Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J. Biol. Chem. 278, 26666–26676.

Herman, G. E. (2003). Disorders of cholesterol biosynthesis: Prototypic metabolic malformation syndromes. Human Mole. Gene 2, 75–88.

Heupel, R. C., Sauvaire, Y., Le, P. H., Parish, E. J., and Nes, W. D. (1986). Sterol composition and biosynthesis in sorghum: Importance to developmental regulation. Lipids 21, 69–76.

Heupel, R. D., Nes, W. D., and Verbeke, J. A. (1987). Developmental regulation of sterol and pentacyclic triterpenoid biosynthesis and composition: A correlation with sorghum floral initiation. In ‘‘The Metabolism, Structure, and Function of Plant Lipids’’ (P. K. Stumpf, J. B. Mudd, and W. D. Nes, eds.), pp. 53–56. Plenum Press, New York.

Holmberg, N., Harker, M., Gibbard, C. L., Wallce, A. D., Clayton, J. C., Rawlins, S., Hellyer, A., and Safford, R. (2002). Sterol methyltransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed. Plant Physiol. 130, 303–311.

Holmberg, N., Harker, M., Wallace, A. D., Clayton, A. D., Gibbard, C. L., and Safford, R. (2003). Co-expression of N-terminus truncated 3-hydroxy-3-methylglutaryl CoA reductase and C24- methyltransferase type 1 in transgenic tobacco enhances carbon flux towards end-product sterols. Plant J. 36, 12–20.

Julia, M., and Marazano, C. (1985). Biomimetic methyltransfer to olefins. Tetrahedron 41, 3717–3724.

Kalinowska, M., Nes, W. R., Crumley, F. G., and Nes, W. D. (1990). Stereochemical differences in the anatomical distribution of C-24 alkylated sterols in Kalanchoe diagremontiana. Phytochemistry 29, 3427–3434.

Kaneshiro, E. S., Rosenfeld, J. A., Basselin-Eiweida, M., Stringer, J. R., Keeley, S. P., Smulian, A. G., and Giner, J.-L. (2002). The Pneumocystis carinii drug target S-adenosyl-methionine: Sterol C-24 methyl transferase has a unique substrate preference. Mol. Microbiol. 44, 989–999.

Kresge, N., Simoni, R. D., and Hill, R. L. (2005). The biosynthetic pathway for cholesterol: Konrad Bloch. J. Biol. Chem. 280, 7–10.

Laule, O., Furholz, A., Chang, H.-S., Zhu, T., Wang, X., Heifetz, P. B., Gruissem, W., and Lange, B. M. (2003). Cross-talk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 100, 6866–6871.

Ledford, H. K., Baroli, I., Shin, J. W., Fisher, B. B., Eggen, R. I. L., and Niyogi, K. K. (2004). Comparative profiling of lipid-soluble antioxidants and transcript reveals two phases of photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas reinhardtii. Mol. Gen. Genomics 272, 47–479.

Lichtenthaler, H. K., Schwender, J., Disch, A., and Rohmer, M. (1997). Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 400, 271–274.

Lindsey, K., Pullen, M. L., and Topping, J. F. (2003). Importance of plants sterols in pattern formation and hormone signaling. Trends Plant Sci. 8, 521–525.

Ling, W. H., and Jones, P. J. (1995). Dietary phytosterols: A review of metabolism, benefits and side effects. Life Sci. 57, 195–206.

Mangla, A. T., and Nes, W. D. (2000). Sterol C-methyl transferase from Prototheca wickerhamii: Mechanism, sterol specificity and inhibition. Bioorg. Med. Chem. 8, 925–936.

Marshall, J. A. (2007). Studies on the enzymology of sterol methyltransferase from Saccharomyces cervevisiae. Dissertation pp. 1–95. Texas Tech University.

Marshall, J. A., Dennis, A. L., Haynes, A., Kumazawa, T., and Nes, W. D. (2001). Sterol composition and utilization of soybean sterols by Phytophthora sojae. Phytochemistry 58, 423–428.

Mckersie, B. D., and Thompson, J. E. (1979). Influence of plant sterols on the phase properties of phospholipid bilayers. Plant Physiol. 63, 802–806.

Moreau, R. A., Whitaker, B. D., and Hicks, K. B. (2002). Phytosterols, phytostanols and their conjugates in foods: Structural diversity, quantitative analysis, and health-promoting uses. Prog. Lipid Res. 41, 457–500.

Nes, W. D. (1990). Control of sterol biosynthesis and its importance to developmental regulation and evolution. Rec. Adv. Phytochem. 24, 283–327.

Nes, W. D. (1997). Development of Transgenic Plants with Modified Sterol Compositions Patent Application Ser. No. 08/998,339.

Nes, W. D. (2000). Sterol methyltransferase: Enzymology and inhibition. Biochim. Biophys. Acta 1529, 63–88.

Nes, W. D. (2003). Enzyme mechanisms for sterol C-methylations. Phytochemistry 64, 75–95.

Nes, W. D., and Bach, T. J. (1985). Evidence for a mevalonate shunt in a tracheophyte. Proc. R. Soc., Lond., B 224, 425–444.

Nes, W. D., and Heupel, R. C. (1986). Physiological requirement for biosynthesis of multiple 24β-methylsterols in Gibberella fujikuroi. Arch. Biochem. Biophys. 244, 211–217.

Nes, W. D., and Le, P. H. (1990). Evidence for separate intermediates in the biosynthesis of multiple 24β-methylsterol end products by Gibberella fujikuroi. Biochim. Biophys. Acta 1042, 119–125.

Nes, W. D., and Nguyen, H. T. (unpublished data).

Nes, W. D., and Schmidt, J. O. (1988). Isolation of 25(27)-dehydrolanost-8-enol from Cereus giganteus and its biosynthetic importance. Phytochemistry 27, 1705–1708.

Nes, W. D., Wong, R. Y., Benson, M., Landrey, J. R., and Nes, W. R. (1984). Rotational isomerism about the 17(20)-bond of steroids and euphoids as shown by the crystal structures of euphol and tirucallol. Proc. Natl. Acad. Sci. 81, 5896–5900.

Nes, W. D., Heupel, R. C., and Le, P. H. (1985). Biosynthesis of ergosta-6(7), 8(14), 22(23)-trien-3β-ol by Gibberella fujikuroi: Its importance to ergosterol’s metabolic pathway. J. Chem. Chem. Commun. 8, 1431–1433.

Nes, W. D., Hanners, P. K., and Parish, E. J. (1986). Control of fungal sterol C-24 transalkylation. Importance to developmental regulation. Biochem. Biophys. Res. Commun. 139, 410–415.

Nes, W. D., Xu, S., and Haddon, W. F. (1989a). Evidence for similarities and differences in the biosynthesis of fungal sterols. Steroids 53, 533–558.

Nes, W. D., Xu, S., and Parish, E. J. (1989b). Metabolism of 24(R,S), 25-epiminolanosterol to 25-aminolanosterol and lanosterol by Gibberella fujikuroi. Arch. Biochem. Biophys. 272, 323–331.

Nes, W. D., Norton, R. A., Crumley, F. G., Madigan, S. J., and Katz, E. R. (1990). Sterol phylogenesis and algal evolution. Proc. Natl. Acad. Sci. 87, 7565–7569.

Nes, W. D., Wong, R. Y., Benson, M., and Akihisa, T. (1991a). Conformational analysis of 10-a cucurbitadienol. J. Chem. Soc. Chem. Commun. 18, 1272–1274.

Nes, W. D., Janssen, G. G., and Bergenstrahle, A. (1991b). Structural requirements for transformation of substrates by the (S)-adenosyl-L-methionine: Δ24(25)-sterol methyl transferase. J. Biol. Chem. 266, 15202–15212.

Nes, W. D., Janssen, G. G., Norton, R. A., Kalinowska, M., Crumley, F. G., Tal, B., Bergenstrahle, A., and Jonsson, L. (1991c). Regulation of sterol biosynthesis in sunflower by 24(R,S)-25-epiminolanosterol, a novel C-24 methyl transferase inhibitor. Biochem. Biophys. Res. Commun. 177, 566–574.

Nes, W. D., Norton, R. A., and Benson, M. (1992). Carbon-13 NMR studies on sitosterol biosynthesized from [13C]mevalonates. Phytochemistry 31, 805–816.

Nes, W. D., Janssen, G. G., Crumley, F. G., Kalinowska, M., and Akihisha, T. (1993). The structural requirements of sterols for membrane function in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 300, 724–733.

Nes, W. D., Lopez, M., Zhou, W., Dowd, P. F., and Norton, R. A. (1997). Sterol utilization and metabolism by Heliothis zea. Lipids 32, 1317–1323.

Nes, W. D., Koike, K., Jia, Z., Sakamoto, Y., Satou, T., Nikaido, T., and Griffin, J. F. (1998a). 9β,19-Cyclosterol analysis by 1H- and 13C-NMR, crystallographic observations and molecular mechanics calculations. J. Am. Chem. Soc. 120, 5970–5980.

Nes, W. D., McCourt, B. S., Zhou, W., Ma, J., Marshall, J. A., Peek, L. A., and Brennan, M. (1998b). Overexpression, purification, and stereochemical studies of the recombinant (S)-adenosyl-Lmethionine: Δ24(25)- to Δ24(28)-sterol methyl transferase enzyme from Saccharomyces cerevisiae. Arch. Biochem. Biophys. 353, 297–311.

Nes, W. D., McCourt, B. S., Marshall, J. A., Ma, J., Dennis, A. L., Lopez, M., Li, H., and He, L. (1999). Site-directed mutagenesis of the sterol methyltransferase active site from Saccharomyces cerevisiae results in formation of 24-ethyl sterols. J. Org. Chem. 64, 1535–1542.

Nes, W. D., Lukyanenko, Y. O., Jia, Z., Quideau, S., Howald, W. N., Pratum, T. K., West, R. R., and Hutson, J. C. (2000). Identification of the lipophilic factor produced by macrophages that stimulates steroidogenesis. Endocrinology 142, 953–958.

Nes, W. D., Marshall, J. A., Jia, Z., Jaradat, T. T., Song, Z., and Jayasimha, P. (2002). Active site mapping and substrate channeling in the sterol methyltransferase pathway. J. Biol. Chem. 277, 42549–42556.

Nes, W. D., Song, Z., Dennis, A. L., Zhou, W., Nam, J., and Miller, M. (2003). Biosynthesis of phytosterols: Kinetic mechanism for the enzymatic C-methylation of sterols. J. Biol. Chem. 278, 34505–34516.

Nes, W. D., Jayasimha, P., Zhou, W., Ragu, K., Jin, C., Jaradat, T. T., Shaw, R. W., and Bujinicki, J. M. (2004). Sterol methyltransferase. Functional analysis of highly conserved residues by site-directed mutagenesis. Biochemistry 43, 569–576.

Nes, W. R. (1980). Function as an evolutionary determinant of biosynthesis. In ‘‘Biogenesis and Function of Plant Lipids’’ (P. Mazilak, P. Benveniste, C. Costes, and R. Douce, eds.), pp. 387–394. Elsevier, North Holland Biomedical Press.

Nes, W. R. (1987a). Multiple roles for plant sterols. In ‘‘The Metabolism, Structure and Function of Plant Lipids’’ (P. K. Stumpf, J. B. Mudd, and W. D. Nes, eds.), pp. 3–9. Plenum Press, New York.

Nes, W. R. (1987b). Structure-function relationships for sterols in Saccharomyces cerevisiae. ACS Symp. Ser. 325, 252–267.

Nes, W. R., and McKean, M. L. (1977). ‘‘Biochemistry of Steroids and Other Isopentenoids,’’ pp. 412–452. University Park Press, Baltimore, MD.

Nes, W. R., Krevitz, K., Joseph, J., Nes, W. D., Harris, B., Gibbons, G. F., and Patterson, G. W. (1977). The phylogenetic distribution of sterols in tracheophytes. Lipids 12, 511–527.

Norton, R. A., and Nes, W. D. (1991). Identification of ergosta-6(8), 8(14), 25(27)-trien-3β-ol and ergosta-5(6), 7(8), 25(27)-trien-3b-ol; two new steroidal trienes synthesized by Prototheca wickerhamii. Lipids 26, 247–249.

Ounaroon, A., Decker, G., Schmidt, J., Lottspeich, F., and Kutchan, T. M. (2002). (R,S)-Retuculine 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum— cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J. 36, 808–819.

Parker, S. R., and Nes, W. D. (1992). Regulation of sterol biosynthesis and its phylogenetic implications. In ‘‘Regulation of Isopentenoid Metabolism’’ (W. D. Nes, E. J. Parish, and J. M. Trzaskos, eds.), Vol. 497, pp. 110–145. American Chemical Society Symposium Series, Washington, DC.

Parks, L. W., Crowley, J. H., Leak, F. W., Smith, S. J., and Tomeo, M. E. (1997). Use of sterol mutants as probes for sterol functions in the yeast Saccharomyces cerevisiae. In ‘‘Biochemistry and Function of Sterols’’ (E. J. Parish and W. D. Nes, eds.), pp. 257–262. CRC Press, Boca Raton.

Popja´k, G., Edmond, J., Anet, F. A., and Easton, N. R., Jr. (1977). Carbon-13 NMR studies on cholesterol biosynthesized from [13C]mevalonates. J. Amer. Chem. Soc. 99, 931–935.

Rahier, A., Narula, A. S., Benveniste, P., and Schmitt, P. (1980). 25-Azacycloartanol, a potent inhibitor of S-adenosyl-methionine sterol-C24 and C28 methyltransferase in higher plants. Biochem. Biophys. Res. Commun. 92, 20–25.

Rahier, A., Genot, J.-C., Benveniste, P., and Narula, A. S. (1984). Inhibition of S-adenosyl-L-methionine sterol C-24 methyl transferase by analogues of a carbocationic high energy intermediate. J. Biol. Chem. 259, 15213–15215.

Sauvaire, Y., Tal, B., Heupel, R. C., England, R., Hanners, P. K., Nes, W. D., and Mudd, J. B. (1997). A comparison of sterol and long chain fatty acid biosynthesis in Sorghum bicolor. In ‘‘TheMetabolism, Structure and Function of Plant Lipids’’ (P. K. Stumpf, J. B. Mudd, andW. D. Nes, eds.), pp. 107–110. Plenum Press, New York.

Schaeffer, A., Bouvier-Nave, P., Benveniste, P., and Schaller, H. (2000). Plant sterol C-24-methyltransferases: Different profiles of tobacco transformed with SMT1 and SMT2. Lipids 35, 263–269.

Schaeffer, A., Bronner, R., Benveniste, P., and Schaller, H. (2001). The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1. Plant J. 25, 605–615.

Schaller, H. (2004). New aspects of sterol biosynthesis in growth and development of higher plants. Plant Physiol. Biochem. 42, 465–476.

Schaller, H., Bouvier-Nave, P., and Benveniste, P. (2001). Overexpression of an Arabidopsis cDNA encoding a sterol-C-241-methyltranferase in tobacco modifies the ratio of 4-methyl cholesterol to sitosterol and is associated with growth reduction. Plant Physiol. 118, 461–469.

Schubert, H. L., Blumenthal, R. M., and Cheng, X. (2003). Many paths to methyltransfer: A chronicle of convergence. Trends Biochem. Sci. 28, 329–335.

Schuler, I., Milon, A., Nakatani, Y., Ourisson, G., Albrecht, A.-M., Benveniste, P., and Hartmann, M.-A. (1991). Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. Proc. Natl. Acad. Sci. 88, 6926–6930.

Seo, S., Uomori, A., Yashimura, Y., Takeda, K. J., Seto, H., Ebizuka, Y., Noguchi, H., and Sankawa, U. (1988). Biosynthesis of sitosterol, cycloartenol, and 24-methylene cycloartanol in tissue cultures of higher plants and ergosterol in yeast from [1,2–13C2]- and [2–13C2H3]-acetate and [5–13C2H2]mevalonic acid. J. Chem. Soc. Perkin I 8, 2407–2413.

Seo, S., Uomori, A., Yoshimura, Y., Seto, H., Ebizuka, Y., Noguchi, H., Sankawa, U., and Takeda, K. (1990). Biosynthesis of isofucosterol from [2–13C2H3] and [1,2–13C]acetate in tissue cultures of Physalis peruviana-the stereochemistry of the hydride shift from C-24 to C-25. J. Chem. Soc. Perkin I 1, 105–109.

Shi, J., Gonzales, R. A., and Bhattacharyya, M. K. (1996). Identification and characterization of an S-adenosyl-L-methionine: Δ24-sterol C-methyl transferase cDNA from soybean. J. Biol. Chem. 271, 9384–9389.

Sinha, A. (2004). Protein engineering soybean sterol methyltransferase leads to altered substrate binding and catalysis, pp. 1–63. Texas Tech University, Master Thesis.

Sitbon, F., and Jonsson, L. (2001). Sterol composition and growth of transgenic tobacco plants expressing type-1 and type 2 sterol methyltransferases. Planta 212, 568–572.

Svoboda, J. A., Ross, S. R., and Nes, W. D. (1995). Comparative studies of metabolism of 4-desmethyl, 4-monomethyl, and 4,4-dimethyl sterols in Manduca sexta. Lipids 30, 91–94.

Tapiero, H., Townsend, D. M., and Tew, K. D. (2003). Phytosterols in the prevention of human pathologies. Biomed. Pharmacother. 57, 321–325.

Umlauf, D., Zapp, J., Becker, H., and Adam, K. P. (2004). Biosynthesis of irregular monoterpene artemisia ketone, the sesquiterpene germacrene D and other isoprenoids in Tanacetum vulgare L. (Asteracease). Phytochemistry 65, 2463–2470.

Venkatramesh, M., Guo, D., Jia, Z., and Nes, W. D. (1996). Mechanism and structural requirements for transformation of substrates by the (S)-adenosyl-L methionine: Δ24(25)-sterol methyl transferase from Saccharomyces cerevisiae. Biochim. Biophys. Acta 1299, 313–324.

Volkman, J. K. (2005). Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways. Org. Geochem. 36, 139–159.

Wentzinger, L. F., Bach, T. J., and Hartmann, M.-A. (2002). Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Physiol. 130, 1–13.

Wojciechowski, Z. A. (1991). Biochemistry of phytosterol conjugates. In ‘‘Physiology and Biochemistry of Sterols’’ (G. W. Patterson and W. D. Nes, eds.), pp. 361–395. Amer. Oil Chem. Soc. Press, Champaign.

Xu, S., Norton, R. A., Crumley, F. G., and Nes, W. D. (1988). Comparison of the chromatographic properties of sterols, select additional steroids and triterpenoids: Gravity-flow liquid chromatography, thin-layer chromatography, gas-liquid chromatography, and high performance liquid chromatography. J. Chromatogr. 452, 377–398.

Zhou, W., and Nes, W. D. (2000). Stereochemistry of hydrogen introduction at C-25 in ergosterol synthesized by the mevalonate-independent pathway. Tetrahedron Lett. 41, 2791–2795.

Zhou, W., and Nes, W. D. (2003). Sterol methyltransferase2: Purification, properties and inhibition. Arch. Biochem. Biophys. 420, 18–34.

Zhou, W., Guo, D., and Nes, W. D. (1996). Stereochemistry of hydrogen migration from C-24 to C-25 during biomethylation in ergosterol biosynthesis. Tetrahedron Lett. 37, 1339–1342.

Zhou, W., Minh, T. T., Collins, M. S., Cushion, M. T., and Nes, W. D. (2002). Evidence for multiple sterol methyltransferase pathways in Pneumocystis carinii. Lsipid 37, 1177–1186.

Zhou, W., Song, Z., Kanagasabai, R., Liu, J., Jayasimha, P., Sinha, A., Veeramachanemi, P., Miller, M. B., and Nes, W. D. (2004). Mechanism-based enzyme inactivators of phytosterol biosynthesis— a review. Molecules 9, 185–203.

Zhou, W., Lepesheva, G. I., Waterman, M. R., and Nes, W. D. (2006). Mechanistic analysis of a multiple product sterol methyltransferase implicated in ergosterol biosynthesis in Trypanosoma brucei. J. Biol. Chem. 281, 6290–6296.

Zubieta, C., Kota, P., Ferrer, J.-L., Dixon, R. A., and Noel, J. (2002). Structural basis for modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. The Plant Cell 14, 1265–1277.