Cell Concept
Cell Concept
More than 300 years ago the English scientist and inventor Robert Hooke, using a primitive compound microscope, observed boxlike cavities in slices of cork and leaves. He called these compartments “little boxes or cells.” In the years that followed Hooke’s first demonstration of the remarkable powers of the microscope before the Royal Society of London in 1663, biologists gradually began to realize that cells were far more than simple containers filled with “juices.”
Cells are the fabric of life. Even the most primitive cells are enormously complex structures that form the basic units of all living organisms. All tissues and organs are composed of cells. In a human an estimated 60 trillion cells interact, each performing its specialized role in an organized partnership. In single-celled organisms all the functions of life are performed within the confines of one microscopic package. There is no life without cells. The idea that the cell represents the basic structural and functional unit of life is an important unifying concept of biology.
With the exception of some eggs, which are the largest cells (in volume) known, cells are small and mostly invisible to the unaided eye. Consequently, our understanding of cells paralleled technical advances in the resolving power of microscopes. The Dutch microscopist A. van Leeuwenhoek sent letters to the Royal Society of London containing detailed descriptions of the numerous organisms he had observed using high-quality single lenses that he had made (1673 to 1723). In the early nineteenth century, the improved design of microscopes permitted biologists to see separate objects only one µm apart. This advance was quickly followed by new discoveries that laid the groundwork for the cell theory—a theory stating that all living organisms are composed of cells.
In 1838 Matthias Schleiden, a German botanist, announced that all plant tissue was composed of cells. A year later one of his countrymen, Theodor Schwann, described animal cells as being similar to plant cells, an understanding that had been long delayed because animal cells are bounded only by a nearly invisible plasma membrane rather than a distinct cell wall characteristic of plant cells. Schleiden and Schwann are thus credited with the unifying cell theory that ushered in a new era of productive exploration in cell biology.
In 1840 J. Purkinje introduced the term protoplasm to describe cell contents. Protoplasm was at first thought to be a granular, gel-like mixture with special and elusive life properties of its own; cells were viewed as bags of thick soup containing a nucleus. Later the interior of cells became increasingly visible as microscopes were improved and better tissue-sectioning and staining techniques were introduced. Rather than being a uniform granular soup, a cell’s interior is composed of numerous cellular organelles, each performing a specific function in the life of a cell. Today we realize that the components of a cell are so highly organized, structurally and functionally, that describing its contents as “protoplasm” is like describing the contents of an automobile engine as “autoplasm.”
More than 300 years ago the English scientist and inventor Robert Hooke, using a primitive compound microscope, observed boxlike cavities in slices of cork and leaves. He called these compartments “little boxes or cells.” In the years that followed Hooke’s first demonstration of the remarkable powers of the microscope before the Royal Society of London in 1663, biologists gradually began to realize that cells were far more than simple containers filled with “juices.”
Cells are the fabric of life. Even the most primitive cells are enormously complex structures that form the basic units of all living organisms. All tissues and organs are composed of cells. In a human an estimated 60 trillion cells interact, each performing its specialized role in an organized partnership. In single-celled organisms all the functions of life are performed within the confines of one microscopic package. There is no life without cells. The idea that the cell represents the basic structural and functional unit of life is an important unifying concept of biology.
With the exception of some eggs, which are the largest cells (in volume) known, cells are small and mostly invisible to the unaided eye. Consequently, our understanding of cells paralleled technical advances in the resolving power of microscopes. The Dutch microscopist A. van Leeuwenhoek sent letters to the Royal Society of London containing detailed descriptions of the numerous organisms he had observed using high-quality single lenses that he had made (1673 to 1723). In the early nineteenth century, the improved design of microscopes permitted biologists to see separate objects only one µm apart. This advance was quickly followed by new discoveries that laid the groundwork for the cell theory—a theory stating that all living organisms are composed of cells.
In 1838 Matthias Schleiden, a German botanist, announced that all plant tissue was composed of cells. A year later one of his countrymen, Theodor Schwann, described animal cells as being similar to plant cells, an understanding that had been long delayed because animal cells are bounded only by a nearly invisible plasma membrane rather than a distinct cell wall characteristic of plant cells. Schleiden and Schwann are thus credited with the unifying cell theory that ushered in a new era of productive exploration in cell biology.
In 1840 J. Purkinje introduced the term protoplasm to describe cell contents. Protoplasm was at first thought to be a granular, gel-like mixture with special and elusive life properties of its own; cells were viewed as bags of thick soup containing a nucleus. Later the interior of cells became increasingly visible as microscopes were improved and better tissue-sectioning and staining techniques were introduced. Rather than being a uniform granular soup, a cell’s interior is composed of numerous cellular organelles, each performing a specific function in the life of a cell. Today we realize that the components of a cell are so highly organized, structurally and functionally, that describing its contents as “protoplasm” is like describing the contents of an automobile engine as “autoplasm.”