Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
 
 
 
 
Main Menu
Please click the main subject to get the list of sub-categories
 
Services offered
 
 
 
 
  Section: Biotechnology Methods » Cell Biology and Genetics
 
 
Please share with your friends:  
 
 

Preparation of Somatic Chromosomes from Rat Bone Marrow

 
     
 
Content
Cell Biology and Genetics
  Cell Cycles
  Meiosis in Flower Buds of Allium Cepa-Acetocarmine Stain
  Meiosis in Grasshopper Testis (Poecilocerus Pictus)
  Mitosis in Onion Root Tip (Allium Cepa)
  Differential Staining of Blood
  Buccal Epithelial Smear and Barr Body
  Vital Staining of DNA and RNA in Paramecium
  Induction of Polyploidy
  Mounting of Genitalia in Drosophila Melanogaster
  Mounting of Genitalia in the Silk Moth Bombyx Mori
  Mounting of the Sex Comb in Drosophila Melanogaster
  Mounting of the Mouth Parts of the Mosquito
  Normal Human Karyotyping
  Karyotyping
  Black and White Film Development and Printing for Karyotype Analysis
  Study of Drumsticks in the Neutrophils of Females
  Study of the Malaria Parasite
  Vital Staining of DNA and RNA in Paramecium
  Sex-Linked Inheritance in Drosophila Melanogaster
  Preparation of Somatic Chromosomes from Rat Bone Marrow
  Chromosomal Aberrations
  Study of Phenocopy
  Study of Mendelian Traits
  Estimation of Number of Erythrocytes [RBC] in Human Blood
  Estimation of Number of Leucocytes (WBC) in Human Blood
  Culturing Techniques and Handling of Flies
  Life Cycle of the Mosquito (Culex Pipiens)
  Life Cycle of the Silkworm (Bombyx Mori)
  Vital Staining of Earthworm Ovary
  Culturing and Observation of Paramecium
  Culturing and Staining of E.coli (Gram’s Staining)
  Breeding Experiments in Drosophila Melanogaster
  Preparation of Salivary Gland Chromosomes
  Observation of Mutants in Drosophila Melanogaster
  ABO Blood Grouping and Rh Factor in Humans
  Determination of Blood Group and Rh Factor
  Demonstration of the Law of Independent Assortment
  Demonstration of Law of Segregation

To study the structure of somatic chromosomes in the bone marrow of rats.

Materials
  • 0.05% colchicine
  • 0.56% KCl
  • Centrifuge
  • Centrifuge tubes
  • Syringe
  • Glass slides
  • Fixatives
  • Stain
    and
  • Microscope
Procedure
Inject 0.05% colchinine interperitonially into the rat 1½ hours before the experiment starts. The volume to be injected varies with the weight of the rat. If the rat is around 40 gms or more, 1 mL of 0.05% colchinine should be injected. Leave the rat for 1½ hours and then kill it by cervical dislocation. Then, remove the femur bone. Flush the bone marrow in a clear petri dish using 0.56% KCl, which serves as a hypotonic solution. Remove all large particles by straining the solution in a clear cheesecloth or muslin. Take the filtrate in a centrifuge tube and spin it at 1000 rpm for 10 minutes. Obtain a cell button after pouring the supernatant. The fixative (1:3 acetic alcohol), which is
made by mixing 1 part of acetic acid with 3 parts of acetone-free methanol or absolute alcohol, is added to the cell button and gently mixed. Centrifuge again to get a fresh cell button and add fresh fixative to get a cell suspension. This method is repeated twice. Finally, drop the cell suspension onto a clear slide, preferably kept in cold alcohol. Allow the drops on the surface of the slide to dry. This technique is known as the air drop technique or air dry preparation. Then the air-dried slides are taken for the staining. Freshly prepared air-dried slides produce better results for the Gimsa stain. For nonbanded chromosomes, the standard Gimsa stain is diluted with 6.8 pH phosphate buffer solution. 5 mL of phosphate buffer solution is taken and added to matured 1 mL of stock Gimsa stain in a coupling jar, and mixed well. This is the active working Gimsa stain. Dip the slides in the stain for 15–20 minutes. Wash it under slow running water until the excess stain is removed. Then rinse it with distilled water. Allow it to dry. Then observe the slides under the microscope.

Observation
Somatic chromosomes of rat bone marrow were observed deep violet under the microscope.

 
     
 
 
     




     
 
Copyrights 2012 © Biocyclopedia.com | Disclaimer