The Homeotic Genes

The Homeotic Genes
Head of a fruit fly with a pair of legs growing out of head sockets where antennae normally grow. The Antennapedia homeotic gene normally specifies the second thoracic segment (with legs), but the dominant mutation of this gene leads to this bizarre phenotype.
Figure 8-16 Head of a fruit fly
with a pair of legs growing out of
head sockets where antennae
normally grow. The Antennapedia
homeotic gene normally specifies
the second thoracic segment (with
legs), but the dominant mutation
of this gene leads to this bizarre
phenotype.
As development proceeds, gene expression must be regulated to ensure the orderly development of the embryo. Among the earliest and most important genes to be expressed are those that control the overall body plan of the embryo. Recently much attention has been focused on the homeotic genes (Gr. homoios, to be like, or resembling) of fruit flies, which specify the identity of segments and assure that structures such as legs and wings and antennae develop in the right place. When mutated, homeotic genes produce dramatic effects on body organization, such as the replacement of a body part with a structure normally found elsewhere in the body (Figure 8-16). It soon became evident that such mutations were affecting master genes that controlled the expression of many subordinate genes. During the cloning and sequencing of homeotic genes, a 180-nucleotide DNA sequence was discovered, called the homeobox. Homeoboxes were soon found in the genomes of other arthropods, and in animals as diverse as cnidarians, nematodes, annelids, sea urchins, and vertebrates. An important characteristic of the homeobox is that the 180-nucleotide sequence is highly conserved, that is, the sequence is remarkably similar in homeobox genes of different species, even those widely separated in evolutionary origin. For example, the homeobox in a mouse homeotic gene shares two-thirds of its base pairs with a homeobox in one of the fruit fly homeotic genes. Genes carrying the homeobox sequence are all expressed during development, suggesting that the homeobox performs a broadly essential function.

All proteins coded by homeobox genes contain a highly conserved 60- amino acid sequence called the homeodomain. Evidence suggests that all homeodomain proteins studied are regulatory proteins that recognize and bind to specific promoter sequences of DNA in the genes regulated by the homeotic genes. In this way the homeodomain proteins switch subordinate genes on or off at specific times during development.

Homology of homeobox genes in insects and mammals. These genes in both insects (fruit fly) and mammals (mouse) control the subdivision of the embryo into regions of different developmental fates along the anterior-posterior axis. The homeobox-containing genes lie on a single chromosome of the fruit fly and on four separate chromosomes in the mouse. Clearly defined homologies between the two, and the parts of the body in which they are expressed, are shown in color. The open boxes denote areas where it is difficult to identify specific homologies between the two.
Figure 8-17 Homology of homeobox genes in
insects and mammals. These genes in both insects
(fruit fly) and mammals (mouse) control the
subdivision of the embryo into regions of different
developmental fates along the anterior-posterior
axis. The homeobox-containing genes lie on a
single chromosome of the fruit fly and on four
separate chromosomes in the mouse. Clearly
defined homologies between the two, and the
parts of the body in which they are expressed, are
shown in color. The open boxes denote areas
where it is difficult to identify specific homologies
between the two.
Much of our understanding of homeoboxes comes from studies of homeobox control of segmentation in insects, especially fruit flies. Researchers discovered that the homeoboxcontaining genes are lined up along a fly’s third chromosome in precisely the same order as segments of the fly’s body that they control. Genes at the beginning of the cluster produce proteins that control the formation of the upper body; those farther along the cluster control development of the upper abdomen; and those at the end of the cluster control development of the lower abdomen (Figure 8-17). Mice and humans have four clusters of homeobox-containing genes, each cluster located on a separate chromosome. Researchers who first revealed the order of these genes in mice discovered that they are homologous to the fruit fly’s homeotic genes: they are structurally similar, they match each other in order, and they obey the same rule of order of expression. That is, genes located near one end of the cluster are expressed in the upper half of the mouse body
How the inhibition of a homeodomain regulatory protein alters normal development of the central nervous system of a frog tadpole. When the protein (encoded by a homeobox DNA sequence known as X1Hbox 1) was inactivated by antibodies directed against it, the area that should have become anterior spinal cord transformed into hindbrain instead.
Figure 8-18 How the
inhibition of a homeodomain
regulatory protein alters
normal development of the
central nervous system of a
frog tadpole. When the
protein (encoded by a
homeobox DNA sequence
known as X1Hbox 1) was
inactivated by antibodies
directed against it, the area
that should have become
anterior spinal cord
transformed into hindbrain
instead.
while those at the other end of the cluster are expressed in the lower half of the body (Figure 8-17).

Amphibian development provides an excellent example of how homeotic genes control development. In amphibians, one homeotic gene encodes a homeobox protein that controls expression of target genes that direct formation of the anterior spinal cord. When researchers injected antibodies directed against the homeobox protein, thus blocking its action, the structure that should have become spinal cord developed into hindbrain instead. The portion of spinal cord that should have formed was missing altogether (Figure 8-18), because the genes that directed its development were not activated in the absence of the homeobox regulatory protein.

The amazing similarity of homeobox complexes in animals as phylogenetically distant as nematodes and mammals suggests that the cluster arose very early in the history of life and was in place in the common ancestor of all Metazoa. Homeobox-containing genes may be considered a defining character, or, in the language of cladistics, a synapomorphy of the animal kingdom. Their function was to specify the fundamental anteroposterior axis of an early metazoan. Once such a complex had evolved, it could be modified to produce new body shapes for the different animal phyla.