Glycolysis

Glycolysis
Glycolysis. Glucose is phosphorylated in two steps and raised to a higher energy level. High-energy fructose-1,6-diphosphate is split into triose phosphates that are oxidized exergonically to pyruvic acid, yielding ATP and NADH.
Figure 4-11 Glycolysis. Glucose is phosphorylated in two steps and raised
to a higher energy level. High-energy fructose-1,6-diphosphate is split into
triose phosphates that are oxidized exergonically to pyruvic acid, yielding
ATP and NADH.
We begin our journey through the stages of respiration with glycolysis, a nearly universal pathway in living organisms that converts glucose into pyruvic acid. In a series of reactions, glucose and other 6-carbon monosaccharides are split into 3-carbon fragments, pyruvic acid (Figure 4-11). A single oxidation occurs during glycolysis, and each molecule of glucose yields two molecules of ATP. In this pathway the carbohydrate molecule is phosphorylated twice by ATP, first to glucose-6-phosphate (not shown in Figure 4-11) and then to fructose-1,6- diphosphate. The fuel has now been “primed” with phosphate groups in this uphill portion of glycolysis and is sufficiently reactive to enable subsequent reactions to proceed. This is a kind of deficit financing that is required for an ultimate energy return many times greater than the original energy investment.

In the downhill portion of glycolysis, fructose-1,6-diphosphate is cleaved into two 3-carbon sugars, which undergo an oxidation (electrons are removed), with the electrons and one of the hydrogen ions being accepted by nicotinamide adenine dinucleotide (NAD, a derivative of the vitamin niacin) to produce a reduced form called NADH. NADH serves as a carrier molecule to convey highenergy electrons to the final electron transport chain, where ATP will be produced.
The two 3-carbon sugars next undergo a series of reactions, ending with the formation of two molecules of pyruvic acid (Figure 4-11). In two of these steps, a molecule of ATP is produced. In other words, each 3-carbon sugar yields two ATP molecules, and since there are two 3-carbon sugars, four ATP molecules are generated. Recalling that two ATP molecules were used to prime the glucose initially, the net yield up to this point is two ATP molecules. The 10 enzymatically catalyzed reactions in glycolysis can be summarized as: